Remove legacy EEPROM fields from FT4232H.
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2020 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 SPDX-License-Identifier: LGPL-2.1-only
8 ***************************************************************************/
9
10/***************************************************************************
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU Lesser General Public License *
14 * version 2.1 as published by the Free Software Foundation; *
15 * *
16 ***************************************************************************/
17
18/**
19 \mainpage libftdi API documentation
20
21 Library to talk to FTDI chips. You find the latest versions of libftdi at
22 https://www.intra2net.com/en/developer/libftdi/
23
24 The library is easy to use. Have a look at this short example:
25 \include simple.c
26
27 More examples can be found in the "examples" directory.
28*/
29/** \addtogroup libftdi */
30/* @{ */
31
32#include <libusb.h>
33#include <string.h>
34#include <errno.h>
35#include <stdio.h>
36#include <stdlib.h>
37
38#include "ftdi_i.h"
39/* Prevent deprecated messages when building library */
40#define _FTDI_DISABLE_DEPRECATED
41#include "ftdi.h"
42#include "ftdi_version_i.h"
43
44#define ftdi_error_return(code, str) do { \
45 if ( ftdi ) \
46 ftdi->error_str = str; \
47 else \
48 fprintf(stderr, str); \
49 return code; \
50 } while(0);
51
52#define ftdi_error_return_free_device_list(code, str, devs) do { \
53 libusb_free_device_list(devs,1); \
54 ftdi->error_str = str; \
55 return code; \
56 } while(0);
57
58
59/**
60 Internal function to close usb device pointer.
61 Sets ftdi->usb_dev to NULL.
62 \internal
63
64 \param ftdi pointer to ftdi_context
65
66 \retval none
67*/
68static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
69{
70 if (ftdi && ftdi->usb_dev)
71 {
72 libusb_close (ftdi->usb_dev);
73 ftdi->usb_dev = NULL;
74 if(ftdi->eeprom)
75 ftdi->eeprom->initialized_for_connected_device = 0;
76 }
77}
78
79/**
80 Initializes a ftdi_context.
81
82 \param ftdi pointer to ftdi_context
83
84 \retval 0: all fine
85 \retval -1: couldn't allocate read buffer
86 \retval -2: couldn't allocate struct buffer
87 \retval -3: libusb_init() failed
88
89 \remark This should be called before all functions
90*/
91int ftdi_init(struct ftdi_context *ftdi)
92{
93 struct ftdi_eeprom* eeprom;
94 ftdi->usb_ctx = NULL;
95 ftdi->usb_dev = NULL;
96 ftdi->usb_read_timeout = 5000;
97 ftdi->usb_write_timeout = 5000;
98
99 ftdi->type = TYPE_BM; /* chip type */
100 ftdi->baudrate = -1;
101 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
102
103 ftdi->readbuffer = NULL;
104 ftdi->readbuffer_offset = 0;
105 ftdi->readbuffer_remaining = 0;
106 ftdi->writebuffer_chunksize = 4096;
107 ftdi->max_packet_size = 0;
108 ftdi->error_str = NULL;
109 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
110
111 if (libusb_init(&ftdi->usb_ctx) < 0)
112 ftdi_error_return(-3, "libusb_init() failed");
113
114 ftdi_set_interface(ftdi, INTERFACE_ANY);
115 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
116
117 eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
118 if (eeprom == 0)
119 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
120 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
121 ftdi->eeprom = eeprom;
122
123 /* All fine. Now allocate the readbuffer */
124 return ftdi_read_data_set_chunksize(ftdi, 4096);
125}
126
127/**
128 Allocate and initialize a new ftdi_context
129
130 \return a pointer to a new ftdi_context, or NULL on failure
131*/
132struct ftdi_context *ftdi_new(void)
133{
134 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
135
136 if (ftdi == NULL)
137 {
138 return NULL;
139 }
140
141 if (ftdi_init(ftdi) != 0)
142 {
143 free(ftdi);
144 return NULL;
145 }
146
147 return ftdi;
148}
149
150/**
151 Open selected channels on a chip, otherwise use first channel.
152
153 \param ftdi pointer to ftdi_context
154 \param interface Interface to use for FT2232C/2232H/4232H chips.
155
156 \retval 0: all fine
157 \retval -1: unknown interface
158 \retval -2: USB device unavailable
159 \retval -3: Device already open, interface can't be set in that state
160*/
161int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
162{
163 if (ftdi == NULL)
164 ftdi_error_return(-2, "USB device unavailable");
165
166 if (ftdi->usb_dev != NULL)
167 {
168 int check_interface = interface;
169 if (check_interface == INTERFACE_ANY)
170 check_interface = INTERFACE_A;
171
172 if (ftdi->index != check_interface)
173 ftdi_error_return(-3, "Interface can not be changed on an already open device");
174 }
175
176 switch (interface)
177 {
178 case INTERFACE_ANY:
179 case INTERFACE_A:
180 ftdi->interface = 0;
181 ftdi->index = INTERFACE_A;
182 ftdi->in_ep = 0x02;
183 ftdi->out_ep = 0x81;
184 break;
185 case INTERFACE_B:
186 ftdi->interface = 1;
187 ftdi->index = INTERFACE_B;
188 ftdi->in_ep = 0x04;
189 ftdi->out_ep = 0x83;
190 break;
191 case INTERFACE_C:
192 ftdi->interface = 2;
193 ftdi->index = INTERFACE_C;
194 ftdi->in_ep = 0x06;
195 ftdi->out_ep = 0x85;
196 break;
197 case INTERFACE_D:
198 ftdi->interface = 3;
199 ftdi->index = INTERFACE_D;
200 ftdi->in_ep = 0x08;
201 ftdi->out_ep = 0x87;
202 break;
203 default:
204 ftdi_error_return(-1, "Unknown interface");
205 }
206 return 0;
207}
208
209/**
210 Deinitializes a ftdi_context.
211
212 \param ftdi pointer to ftdi_context
213*/
214void ftdi_deinit(struct ftdi_context *ftdi)
215{
216 if (ftdi == NULL)
217 return;
218
219 ftdi_usb_close_internal (ftdi);
220
221 if (ftdi->readbuffer != NULL)
222 {
223 free(ftdi->readbuffer);
224 ftdi->readbuffer = NULL;
225 }
226
227 if (ftdi->eeprom != NULL)
228 {
229 if (ftdi->eeprom->manufacturer != 0)
230 {
231 free(ftdi->eeprom->manufacturer);
232 ftdi->eeprom->manufacturer = 0;
233 }
234 if (ftdi->eeprom->product != 0)
235 {
236 free(ftdi->eeprom->product);
237 ftdi->eeprom->product = 0;
238 }
239 if (ftdi->eeprom->serial != 0)
240 {
241 free(ftdi->eeprom->serial);
242 ftdi->eeprom->serial = 0;
243 }
244 free(ftdi->eeprom);
245 ftdi->eeprom = NULL;
246 }
247
248 if (ftdi->usb_ctx)
249 {
250 libusb_exit(ftdi->usb_ctx);
251 ftdi->usb_ctx = NULL;
252 }
253}
254
255/**
256 Deinitialize and free an ftdi_context.
257
258 \param ftdi pointer to ftdi_context
259*/
260void ftdi_free(struct ftdi_context *ftdi)
261{
262 ftdi_deinit(ftdi);
263 free(ftdi);
264}
265
266/**
267 Use an already open libusb device.
268
269 \param ftdi pointer to ftdi_context
270 \param usb libusb libusb_device_handle to use
271*/
272void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
273{
274 if (ftdi == NULL)
275 return;
276
277 ftdi->usb_dev = usb;
278}
279
280/**
281 * @brief Get libftdi library version
282 *
283 * @return ftdi_version_info Library version information
284 **/
285struct ftdi_version_info ftdi_get_library_version(void)
286{
287 struct ftdi_version_info ver;
288
289 ver.major = FTDI_MAJOR_VERSION;
290 ver.minor = FTDI_MINOR_VERSION;
291 ver.micro = FTDI_MICRO_VERSION;
292 ver.version_str = FTDI_VERSION_STRING;
293 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
294
295 return ver;
296}
297
298/**
299 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
300 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
301 use. With VID:PID 0:0, search for the default devices
302 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
303
304 \param ftdi pointer to ftdi_context
305 \param devlist Pointer where to store list of found devices
306 \param vendor Vendor ID to search for
307 \param product Product ID to search for
308
309 \retval >0: number of devices found
310 \retval -3: out of memory
311 \retval -5: libusb_get_device_list() failed
312 \retval -6: libusb_get_device_descriptor() failed
313*/
314int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
315{
316 struct ftdi_device_list **curdev;
317 libusb_device *dev;
318 libusb_device **devs;
319 int count = 0;
320 int i = 0;
321
322 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
323 ftdi_error_return(-5, "libusb_get_device_list() failed");
324
325 curdev = devlist;
326 *curdev = NULL;
327
328 while ((dev = devs[i++]) != NULL)
329 {
330 struct libusb_device_descriptor desc;
331
332 if (libusb_get_device_descriptor(dev, &desc) < 0)
333 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
334
335 if (((vendor || product) &&
336 desc.idVendor == vendor && desc.idProduct == product) ||
337 (!(vendor || product) &&
338 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
339 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
340 || desc.idProduct == 0x6015)))
341 {
342 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
343 if (!*curdev)
344 ftdi_error_return_free_device_list(-3, "out of memory", devs);
345
346 (*curdev)->next = NULL;
347 (*curdev)->dev = dev;
348 libusb_ref_device(dev);
349 curdev = &(*curdev)->next;
350 count++;
351 }
352 }
353 libusb_free_device_list(devs,1);
354 return count;
355}
356
357/**
358 Frees a usb device list.
359
360 \param devlist USB device list created by ftdi_usb_find_all()
361*/
362void ftdi_list_free(struct ftdi_device_list **devlist)
363{
364 struct ftdi_device_list *curdev, *next;
365
366 for (curdev = *devlist; curdev != NULL;)
367 {
368 next = curdev->next;
369 libusb_unref_device(curdev->dev);
370 free(curdev);
371 curdev = next;
372 }
373
374 *devlist = NULL;
375}
376
377/**
378 Frees a usb device list.
379
380 \param devlist USB device list created by ftdi_usb_find_all()
381*/
382void ftdi_list_free2(struct ftdi_device_list *devlist)
383{
384 ftdi_list_free(&devlist);
385}
386
387/**
388 Return device ID strings from the usb device.
389
390 The parameters manufacturer, description and serial may be NULL
391 or pointer to buffers to store the fetched strings.
392
393 \note Use this function only in combination with ftdi_usb_find_all()
394 as it closes the internal "usb_dev" after use.
395
396 \param ftdi pointer to ftdi_context
397 \param dev libusb usb_dev to use
398 \param manufacturer Store manufacturer string here if not NULL
399 \param mnf_len Buffer size of manufacturer string
400 \param description Store product description string here if not NULL
401 \param desc_len Buffer size of product description string
402 \param serial Store serial string here if not NULL
403 \param serial_len Buffer size of serial string
404
405 \retval 0: all fine
406 \retval -1: wrong arguments
407 \retval -4: unable to open device
408 \retval -7: get product manufacturer failed
409 \retval -8: get product description failed
410 \retval -9: get serial number failed
411 \retval -11: libusb_get_device_descriptor() failed
412*/
413int ftdi_usb_get_strings(struct ftdi_context *ftdi,
414 struct libusb_device *dev,
415 char *manufacturer, int mnf_len,
416 char *description, int desc_len,
417 char *serial, int serial_len)
418{
419 int ret;
420
421 if ((ftdi==NULL) || (dev==NULL))
422 return -1;
423
424 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
425 ftdi_error_return(-4, "libusb_open() failed");
426
427 // ftdi->usb_dev will not be NULL when entering ftdi_usb_get_strings2(), so
428 // it won't be closed either. This allows us to close it whether we actually
429 // called libusb_open() up above or not. This matches the expected behavior
430 // (and note) for ftdi_usb_get_strings().
431 ret = ftdi_usb_get_strings2(ftdi, dev,
432 manufacturer, mnf_len,
433 description, desc_len,
434 serial, serial_len);
435
436 // only close it if it was successful, as all other return codes close
437 // before returning already.
438 if (ret == 0)
439 ftdi_usb_close_internal(ftdi);
440
441 return ret;
442}
443
444/**
445 Return device ID strings from the usb device.
446
447 The parameters manufacturer, description and serial may be NULL
448 or pointer to buffers to store the fetched strings.
449
450 \note The old function ftdi_usb_get_strings() always closes the device.
451 This version only closes the device if it was opened by it.
452
453 \param ftdi pointer to ftdi_context
454 \param dev libusb usb_dev to use
455 \param manufacturer Store manufacturer string here if not NULL
456 \param mnf_len Buffer size of manufacturer string
457 \param description Store product description string here if not NULL
458 \param desc_len Buffer size of product description string
459 \param serial Store serial string here if not NULL
460 \param serial_len Buffer size of serial string
461
462 \retval 0: all fine
463 \retval -1: wrong arguments
464 \retval -4: unable to open device
465 \retval -7: get product manufacturer failed
466 \retval -8: get product description failed
467 \retval -9: get serial number failed
468 \retval -11: libusb_get_device_descriptor() failed
469*/
470int ftdi_usb_get_strings2(struct ftdi_context *ftdi, struct libusb_device *dev,
471 char *manufacturer, int mnf_len,
472 char *description, int desc_len,
473 char *serial, int serial_len)
474{
475 struct libusb_device_descriptor desc;
476 char need_open;
477
478 if ((ftdi==NULL) || (dev==NULL))
479 return -1;
480
481 need_open = (ftdi->usb_dev == NULL);
482 if (need_open && libusb_open(dev, &ftdi->usb_dev) < 0)
483 ftdi_error_return(-4, "libusb_open() failed");
484
485 if (libusb_get_device_descriptor(dev, &desc) < 0)
486 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
487
488 if (manufacturer != NULL && mnf_len > 0)
489 {
490 if (desc.iManufacturer == 0)
491 {
492 manufacturer[0] = '\0';
493 }
494 else if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
495 {
496 ftdi_usb_close_internal (ftdi);
497 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
498 }
499 }
500
501 if (description != NULL && desc_len > 0)
502 {
503 if (desc.iProduct == 0)
504 {
505 description[0] = '\0';
506 }
507 else if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
508 {
509 ftdi_usb_close_internal (ftdi);
510 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
511 }
512 }
513
514 if (serial != NULL && serial_len > 0)
515 {
516 if (desc.iSerialNumber == 0)
517 {
518 serial[0] = '\0';
519 }
520 else if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
521 {
522 ftdi_usb_close_internal (ftdi);
523 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
524 }
525 }
526
527 if (need_open)
528 ftdi_usb_close_internal (ftdi);
529
530 return 0;
531}
532
533/**
534 * Internal function to determine the maximum packet size.
535 * \param ftdi pointer to ftdi_context
536 * \param dev libusb usb_dev to use
537 * \retval Maximum packet size for this device
538 */
539static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
540{
541 struct libusb_device_descriptor desc;
542 struct libusb_config_descriptor *config0;
543 unsigned int packet_size;
544
545 // Sanity check
546 if (ftdi == NULL || dev == NULL)
547 return 64;
548
549 // Determine maximum packet size. Init with default value.
550 // New hi-speed devices from FTDI use a packet size of 512 bytes
551 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
552 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
553 packet_size = 512;
554 else
555 packet_size = 64;
556
557 if (libusb_get_device_descriptor(dev, &desc) < 0)
558 return packet_size;
559
560 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
561 return packet_size;
562
563 if (desc.bNumConfigurations > 0)
564 {
565 if (ftdi->interface < config0->bNumInterfaces)
566 {
567 struct libusb_interface interface = config0->interface[ftdi->interface];
568 if (interface.num_altsetting > 0)
569 {
570 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
571 if (descriptor.bNumEndpoints > 0)
572 {
573 packet_size = descriptor.endpoint[0].wMaxPacketSize;
574 }
575 }
576 }
577 }
578
579 libusb_free_config_descriptor (config0);
580 return packet_size;
581}
582
583/**
584 Opens a ftdi device given by an usb_device.
585
586 \param ftdi pointer to ftdi_context
587 \param dev libusb usb_dev to use
588
589 \retval 0: all fine
590 \retval -3: unable to config device
591 \retval -4: unable to open device
592 \retval -5: unable to claim device
593 \retval -6: reset failed
594 \retval -7: set baudrate failed
595 \retval -8: ftdi context invalid
596 \retval -9: libusb_get_device_descriptor() failed
597 \retval -10: libusb_get_config_descriptor() failed
598 \retval -11: libusb_detach_kernel_driver() failed
599 \retval -12: libusb_get_configuration() failed
600*/
601int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
602{
603 struct libusb_device_descriptor desc;
604 struct libusb_config_descriptor *config0;
605 int cfg, cfg0, detach_errno = 0;
606
607 if (ftdi == NULL)
608 ftdi_error_return(-8, "ftdi context invalid");
609
610 if (libusb_open(dev, &ftdi->usb_dev) < 0)
611 ftdi_error_return(-4, "libusb_open() failed");
612
613 if (libusb_get_device_descriptor(dev, &desc) < 0)
614 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
615
616 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
617 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
618 cfg0 = config0->bConfigurationValue;
619 libusb_free_config_descriptor (config0);
620
621 // Try to detach ftdi_sio kernel module.
622 //
623 // The return code is kept in a separate variable and only parsed
624 // if usb_set_configuration() or usb_claim_interface() fails as the
625 // detach operation might be denied and everything still works fine.
626 // Likely scenario is a static ftdi_sio kernel module.
627 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
628 {
629 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
630 detach_errno = errno;
631 }
632 else if (ftdi->module_detach_mode == AUTO_DETACH_REATACH_SIO_MODULE)
633 {
634 if (libusb_set_auto_detach_kernel_driver(ftdi->usb_dev, 1) != LIBUSB_SUCCESS)
635 detach_errno = errno;
636 }
637
638 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
639 ftdi_error_return(-12, "libusb_get_configuration () failed");
640 // set configuration (needed especially for windows)
641 // tolerate EBUSY: one device with one configuration, but two interfaces
642 // and libftdi sessions to both interfaces (e.g. FT2232)
643 if (desc.bNumConfigurations > 0 && cfg != cfg0)
644 {
645 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
646 {
647 ftdi_usb_close_internal (ftdi);
648 if (detach_errno == EPERM)
649 {
650 ftdi_error_return(-8, "inappropriate permissions on device!");
651 }
652 else
653 {
654 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
655 }
656 }
657 }
658
659 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
660 {
661 ftdi_usb_close_internal (ftdi);
662 if (detach_errno == EPERM)
663 {
664 ftdi_error_return(-8, "inappropriate permissions on device!");
665 }
666 else
667 {
668 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
669 }
670 }
671
672 if (ftdi_usb_reset (ftdi) != 0)
673 {
674 ftdi_usb_close_internal (ftdi);
675 ftdi_error_return(-6, "ftdi_usb_reset failed");
676 }
677
678 // Try to guess chip type
679 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
680 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
681 && desc.iSerialNumber == 0))
682 ftdi->type = TYPE_BM;
683 else if (desc.bcdDevice == 0x200)
684 ftdi->type = TYPE_AM;
685 else if (desc.bcdDevice == 0x500)
686 ftdi->type = TYPE_2232C;
687 else if (desc.bcdDevice == 0x600)
688 ftdi->type = TYPE_R;
689 else if (desc.bcdDevice == 0x700)
690 ftdi->type = TYPE_2232H;
691 else if (desc.bcdDevice == 0x800)
692 ftdi->type = TYPE_4232H;
693 else if (desc.bcdDevice == 0x900)
694 ftdi->type = TYPE_232H;
695 else if (desc.bcdDevice == 0x1000)
696 ftdi->type = TYPE_230X;
697
698 // Determine maximum packet size
699 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
700
701 if (ftdi_set_baudrate (ftdi, 9600) != 0)
702 {
703 ftdi_usb_close_internal (ftdi);
704 ftdi_error_return(-7, "set baudrate failed");
705 }
706
707 ftdi_error_return(0, "all fine");
708}
709
710/**
711 Opens the first device with a given vendor and product ids.
712
713 \param ftdi pointer to ftdi_context
714 \param vendor Vendor ID
715 \param product Product ID
716
717 \retval same as ftdi_usb_open_desc()
718*/
719int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
720{
721 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
722}
723
724/**
725 Opens the first device with a given, vendor id, product id,
726 description and serial.
727
728 \param ftdi pointer to ftdi_context
729 \param vendor Vendor ID
730 \param product Product ID
731 \param description Description to search for. Use NULL if not needed.
732 \param serial Serial to search for. Use NULL if not needed.
733
734 \retval 0: all fine
735 \retval -3: usb device not found
736 \retval -4: unable to open device
737 \retval -5: unable to claim device
738 \retval -6: reset failed
739 \retval -7: set baudrate failed
740 \retval -8: get product description failed
741 \retval -9: get serial number failed
742 \retval -12: libusb_get_device_list() failed
743 \retval -13: libusb_get_device_descriptor() failed
744*/
745int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
746 const char* description, const char* serial)
747{
748 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
749}
750
751/**
752 Opens the index-th device with a given, vendor id, product id,
753 description and serial.
754
755 \param ftdi pointer to ftdi_context
756 \param vendor Vendor ID
757 \param product Product ID
758 \param description Description to search for. Use NULL if not needed.
759 \param serial Serial to search for. Use NULL if not needed.
760 \param index Number of matching device to open if there are more than one, starts with 0.
761
762 \retval 0: all fine
763 \retval -1: usb_find_busses() failed
764 \retval -2: usb_find_devices() failed
765 \retval -3: usb device not found
766 \retval -4: unable to open device
767 \retval -5: unable to claim device
768 \retval -6: reset failed
769 \retval -7: set baudrate failed
770 \retval -8: get product description failed
771 \retval -9: get serial number failed
772 \retval -10: unable to close device
773 \retval -11: ftdi context invalid
774 \retval -12: libusb_get_device_list() failed
775*/
776int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
777 const char* description, const char* serial, unsigned int index)
778{
779 libusb_device *dev;
780 libusb_device **devs;
781 char string[256];
782 int i = 0;
783
784 if (ftdi == NULL)
785 ftdi_error_return(-11, "ftdi context invalid");
786
787 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
788 ftdi_error_return(-12, "libusb_get_device_list() failed");
789
790 while ((dev = devs[i++]) != NULL)
791 {
792 struct libusb_device_descriptor desc;
793 int res;
794
795 if (libusb_get_device_descriptor(dev, &desc) < 0)
796 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
797
798 if (desc.idVendor == vendor && desc.idProduct == product)
799 {
800 if (libusb_open(dev, &ftdi->usb_dev) < 0)
801 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
802
803 if (description != NULL)
804 {
805 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
806 {
807 ftdi_usb_close_internal (ftdi);
808 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
809 }
810 if (strncmp(string, description, sizeof(string)) != 0)
811 {
812 ftdi_usb_close_internal (ftdi);
813 continue;
814 }
815 }
816 if (serial != NULL)
817 {
818 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
819 {
820 ftdi_usb_close_internal (ftdi);
821 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
822 }
823 if (strncmp(string, serial, sizeof(string)) != 0)
824 {
825 ftdi_usb_close_internal (ftdi);
826 continue;
827 }
828 }
829
830 ftdi_usb_close_internal (ftdi);
831
832 if (index > 0)
833 {
834 index--;
835 continue;
836 }
837
838 res = ftdi_usb_open_dev(ftdi, dev);
839 libusb_free_device_list(devs,1);
840 return res;
841 }
842 }
843
844 // device not found
845 ftdi_error_return_free_device_list(-3, "device not found", devs);
846}
847
848/**
849 Opens the device at a given USB bus and device address.
850
851 \param ftdi pointer to ftdi_context
852 \param bus Bus number
853 \param addr Device address
854
855 \retval 0: all fine
856 \retval -1: usb_find_busses() failed
857 \retval -2: usb_find_devices() failed
858 \retval -3: usb device not found
859 \retval -4: unable to open device
860 \retval -5: unable to claim device
861 \retval -6: reset failed
862 \retval -7: set baudrate failed
863 \retval -8: get product description failed
864 \retval -9: get serial number failed
865 \retval -10: unable to close device
866 \retval -11: ftdi context invalid
867 \retval -12: libusb_get_device_list() failed
868*/
869int ftdi_usb_open_bus_addr(struct ftdi_context *ftdi, uint8_t bus, uint8_t addr)
870{
871 libusb_device *dev;
872 libusb_device **devs;
873 int i = 0;
874
875 if (ftdi == NULL)
876 ftdi_error_return(-11, "ftdi context invalid");
877
878 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
879 ftdi_error_return(-12, "libusb_get_device_list() failed");
880
881 while ((dev = devs[i++]) != NULL)
882 {
883 if (libusb_get_bus_number(dev) == bus && libusb_get_device_address(dev) == addr)
884 {
885 int res;
886 res = ftdi_usb_open_dev(ftdi, dev);
887 libusb_free_device_list(devs,1);
888 return res;
889 }
890 }
891
892 // device not found
893 ftdi_error_return_free_device_list(-3, "device not found", devs);
894}
895
896/**
897 Opens the ftdi-device described by a description-string.
898 Intended to be used for parsing a device-description given as commandline argument.
899
900 \param ftdi pointer to ftdi_context
901 \param description NULL-terminated description-string, using this format:
902 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
903 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
904 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
905 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
906
907 \note The description format may be extended in later versions.
908
909 \retval 0: all fine
910 \retval -2: libusb_get_device_list() failed
911 \retval -3: usb device not found
912 \retval -4: unable to open device
913 \retval -5: unable to claim device
914 \retval -6: reset failed
915 \retval -7: set baudrate failed
916 \retval -8: get product description failed
917 \retval -9: get serial number failed
918 \retval -10: unable to close device
919 \retval -11: illegal description format
920 \retval -12: ftdi context invalid
921*/
922int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
923{
924 if (ftdi == NULL)
925 ftdi_error_return(-12, "ftdi context invalid");
926
927 if (description[0] == 0 || description[1] != ':')
928 ftdi_error_return(-11, "illegal description format");
929
930 if (description[0] == 'd')
931 {
932 libusb_device *dev;
933 libusb_device **devs;
934 unsigned int bus_number, device_address;
935 int i = 0;
936
937 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
938 ftdi_error_return(-2, "libusb_get_device_list() failed");
939
940 /* XXX: This doesn't handle symlinks/odd paths/etc... */
941 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
942 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
943
944 while ((dev = devs[i++]) != NULL)
945 {
946 int ret;
947 if (bus_number == libusb_get_bus_number (dev)
948 && device_address == libusb_get_device_address (dev))
949 {
950 ret = ftdi_usb_open_dev(ftdi, dev);
951 libusb_free_device_list(devs,1);
952 return ret;
953 }
954 }
955
956 // device not found
957 ftdi_error_return_free_device_list(-3, "device not found", devs);
958 }
959 else if (description[0] == 'i' || description[0] == 's')
960 {
961 unsigned int vendor;
962 unsigned int product;
963 unsigned int index=0;
964 const char *serial=NULL;
965 const char *startp, *endp;
966
967 errno=0;
968 startp=description+2;
969 vendor=strtoul((char*)startp,(char**)&endp,0);
970 if (*endp != ':' || endp == startp || errno != 0)
971 ftdi_error_return(-11, "illegal description format");
972
973 startp=endp+1;
974 product=strtoul((char*)startp,(char**)&endp,0);
975 if (endp == startp || errno != 0)
976 ftdi_error_return(-11, "illegal description format");
977
978 if (description[0] == 'i' && *endp != 0)
979 {
980 /* optional index field in i-mode */
981 if (*endp != ':')
982 ftdi_error_return(-11, "illegal description format");
983
984 startp=endp+1;
985 index=strtoul((char*)startp,(char**)&endp,0);
986 if (*endp != 0 || endp == startp || errno != 0)
987 ftdi_error_return(-11, "illegal description format");
988 }
989 if (description[0] == 's')
990 {
991 if (*endp != ':')
992 ftdi_error_return(-11, "illegal description format");
993
994 /* rest of the description is the serial */
995 serial=endp+1;
996 }
997
998 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
999 }
1000 else
1001 {
1002 ftdi_error_return(-11, "illegal description format");
1003 }
1004}
1005
1006/**
1007 Resets the ftdi device.
1008
1009 \param ftdi pointer to ftdi_context
1010
1011 \retval 0: all fine
1012 \retval -1: FTDI reset failed
1013 \retval -2: USB device unavailable
1014*/
1015int ftdi_usb_reset(struct ftdi_context *ftdi)
1016{
1017 if (ftdi == NULL || ftdi->usb_dev == NULL)
1018 ftdi_error_return(-2, "USB device unavailable");
1019
1020 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1021 SIO_RESET_REQUEST, SIO_RESET_SIO,
1022 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1023 ftdi_error_return(-1,"FTDI reset failed");
1024
1025 // Invalidate data in the readbuffer
1026 ftdi->readbuffer_offset = 0;
1027 ftdi->readbuffer_remaining = 0;
1028
1029 return 0;
1030}
1031
1032/**
1033 Clears the read buffer on the chip and the internal read buffer.
1034 This is the correct behavior for an RX flush.
1035
1036 \param ftdi pointer to ftdi_context
1037
1038 \retval 0: all fine
1039 \retval -1: read buffer purge failed
1040 \retval -2: USB device unavailable
1041*/
1042int ftdi_tciflush(struct ftdi_context *ftdi)
1043{
1044 if (ftdi == NULL || ftdi->usb_dev == NULL)
1045 ftdi_error_return(-2, "USB device unavailable");
1046
1047 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1048 SIO_RESET_REQUEST, SIO_TCIFLUSH,
1049 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1050 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1051
1052 // Invalidate data in the readbuffer
1053 ftdi->readbuffer_offset = 0;
1054 ftdi->readbuffer_remaining = 0;
1055
1056 return 0;
1057}
1058
1059
1060/**
1061 Clears the write buffer on the chip and the internal read buffer.
1062 This is incorrect behavior for an RX flush.
1063
1064 \param ftdi pointer to ftdi_context
1065
1066 \retval 0: all fine
1067 \retval -1: write buffer purge failed
1068 \retval -2: USB device unavailable
1069
1070 \deprecated Use \ref ftdi_tciflush(struct ftdi_context *ftdi)
1071*/
1072int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
1073{
1074 if (ftdi == NULL || ftdi->usb_dev == NULL)
1075 ftdi_error_return(-2, "USB device unavailable");
1076
1077 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1078 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
1079 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1080 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1081
1082 // Invalidate data in the readbuffer
1083 ftdi->readbuffer_offset = 0;
1084 ftdi->readbuffer_remaining = 0;
1085
1086 return 0;
1087}
1088
1089/**
1090 Clears the write buffer on the chip.
1091 This is correct behavior for a TX flush.
1092
1093 \param ftdi pointer to ftdi_context
1094
1095 \retval 0: all fine
1096 \retval -1: write buffer purge failed
1097 \retval -2: USB device unavailable
1098*/
1099int ftdi_tcoflush(struct ftdi_context *ftdi)
1100{
1101 if (ftdi == NULL || ftdi->usb_dev == NULL)
1102 ftdi_error_return(-2, "USB device unavailable");
1103
1104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1105 SIO_RESET_REQUEST, SIO_TCOFLUSH,
1106 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1107 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1108
1109 return 0;
1110}
1111
1112
1113/**
1114 Clears the read buffer on the chip.
1115 This is incorrect behavior for a TX flush.
1116
1117 \param ftdi pointer to ftdi_context
1118
1119 \retval 0: all fine
1120 \retval -1: read buffer purge failed
1121 \retval -2: USB device unavailable
1122
1123 \deprecated Use \ref ftdi_tcoflush(struct ftdi_context *ftdi)
1124*/
1125int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
1126{
1127 if (ftdi == NULL || ftdi->usb_dev == NULL)
1128 ftdi_error_return(-2, "USB device unavailable");
1129
1130 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1131 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
1132 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1133 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1134
1135 return 0;
1136}
1137
1138/**
1139 Clears the RX and TX FIFOs on the chip and the internal read buffer.
1140 This is correct behavior for both RX and TX flush.
1141
1142 \param ftdi pointer to ftdi_context
1143
1144 \retval 0: all fine
1145 \retval -1: read buffer purge failed
1146 \retval -2: write buffer purge failed
1147 \retval -3: USB device unavailable
1148*/
1149int ftdi_tcioflush(struct ftdi_context *ftdi)
1150{
1151 int result;
1152
1153 if (ftdi == NULL || ftdi->usb_dev == NULL)
1154 ftdi_error_return(-3, "USB device unavailable");
1155
1156 result = ftdi_tcoflush(ftdi);
1157 if (result < 0)
1158 return -1;
1159
1160 result = ftdi_tciflush(ftdi);
1161 if (result < 0)
1162 return -2;
1163
1164 return 0;
1165}
1166
1167/**
1168 Clears the buffers on the chip and the internal read buffer.
1169 While coded incorrectly, the result is satisfactory.
1170
1171 \param ftdi pointer to ftdi_context
1172
1173 \retval 0: all fine
1174 \retval -1: read buffer purge failed
1175 \retval -2: write buffer purge failed
1176 \retval -3: USB device unavailable
1177
1178 \deprecated Use \ref ftdi_tcioflush(struct ftdi_context *ftdi)
1179*/
1180int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
1181{
1182 int result;
1183
1184 if (ftdi == NULL || ftdi->usb_dev == NULL)
1185 ftdi_error_return(-3, "USB device unavailable");
1186
1187 result = ftdi_usb_purge_rx_buffer(ftdi);
1188 if (result < 0)
1189 return -1;
1190
1191 result = ftdi_usb_purge_tx_buffer(ftdi);
1192 if (result < 0)
1193 return -2;
1194
1195 return 0;
1196}
1197
1198
1199
1200/**
1201 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
1202
1203 \param ftdi pointer to ftdi_context
1204
1205 \retval 0: all fine
1206 \retval -1: usb_release failed
1207 \retval -3: ftdi context invalid
1208*/
1209int ftdi_usb_close(struct ftdi_context *ftdi)
1210{
1211 int rtn = 0;
1212
1213 if (ftdi == NULL)
1214 ftdi_error_return(-3, "ftdi context invalid");
1215
1216 if (ftdi->usb_dev != NULL)
1217 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
1218 rtn = -1;
1219
1220 ftdi_usb_close_internal (ftdi);
1221
1222 return rtn;
1223}
1224
1225/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1226 to encoded divisor and the achievable baudrate
1227 Function is only used internally
1228 \internal
1229
1230 See AN120
1231 clk/1 -> 0
1232 clk/1.5 -> 1
1233 clk/2 -> 2
1234 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1235 The fractional part has frac_code encoding
1236*/
1237static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1238
1239{
1240 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1241 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1242 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1243 int divisor, best_divisor, best_baud, best_baud_diff;
1244 int i;
1245 divisor = 24000000 / baudrate;
1246
1247 // Round down to supported fraction (AM only)
1248 divisor -= am_adjust_dn[divisor & 7];
1249
1250 // Try this divisor and the one above it (because division rounds down)
1251 best_divisor = 0;
1252 best_baud = 0;
1253 best_baud_diff = 0;
1254 for (i = 0; i < 2; i++)
1255 {
1256 int try_divisor = divisor + i;
1257 int baud_estimate;
1258 int baud_diff;
1259
1260 // Round up to supported divisor value
1261 if (try_divisor <= 8)
1262 {
1263 // Round up to minimum supported divisor
1264 try_divisor = 8;
1265 }
1266 else if (divisor < 16)
1267 {
1268 // AM doesn't support divisors 9 through 15 inclusive
1269 try_divisor = 16;
1270 }
1271 else
1272 {
1273 // Round up to supported fraction (AM only)
1274 try_divisor += am_adjust_up[try_divisor & 7];
1275 if (try_divisor > 0x1FFF8)
1276 {
1277 // Round down to maximum supported divisor value (for AM)
1278 try_divisor = 0x1FFF8;
1279 }
1280 }
1281 // Get estimated baud rate (to nearest integer)
1282 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1283 // Get absolute difference from requested baud rate
1284 if (baud_estimate < baudrate)
1285 {
1286 baud_diff = baudrate - baud_estimate;
1287 }
1288 else
1289 {
1290 baud_diff = baud_estimate - baudrate;
1291 }
1292 if (i == 0 || baud_diff < best_baud_diff)
1293 {
1294 // Closest to requested baud rate so far
1295 best_divisor = try_divisor;
1296 best_baud = baud_estimate;
1297 best_baud_diff = baud_diff;
1298 if (baud_diff == 0)
1299 {
1300 // Spot on! No point trying
1301 break;
1302 }
1303 }
1304 }
1305 // Encode the best divisor value
1306 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1307 // Deal with special cases for encoded value
1308 if (*encoded_divisor == 1)
1309 {
1310 *encoded_divisor = 0; // 3000000 baud
1311 }
1312 else if (*encoded_divisor == 0x4001)
1313 {
1314 *encoded_divisor = 1; // 2000000 baud (BM only)
1315 }
1316 return best_baud;
1317}
1318
1319/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1320 to encoded divisor and the achievable baudrate
1321 Function is only used internally
1322 \internal
1323
1324 See AN120
1325 clk/1 -> 0
1326 clk/1.5 -> 1
1327 clk/2 -> 2
1328 From /2, 0.125 steps may be taken.
1329 The fractional part has frac_code encoding
1330
1331 value[13:0] of value is the divisor
1332 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1333
1334 H Type have all features above with
1335 {index[8],value[15:14]} is the encoded subdivisor
1336
1337 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1338 {index[0],value[15:14]} is the encoded subdivisor
1339
1340 AM Type chips have only four fractional subdivisors at value[15:14]
1341 for subdivisors 0, 0.5, 0.25, 0.125
1342*/
1343static int ftdi_to_clkbits(int baudrate, int clk, int clk_div, unsigned long *encoded_divisor)
1344{
1345 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1346 int best_baud = 0;
1347 int divisor, best_divisor;
1348 if (baudrate >= clk/clk_div)
1349 {
1350 *encoded_divisor = 0;
1351 best_baud = clk/clk_div;
1352 }
1353 else if (baudrate >= clk/(clk_div + clk_div/2))
1354 {
1355 *encoded_divisor = 1;
1356 best_baud = clk/(clk_div + clk_div/2);
1357 }
1358 else if (baudrate >= clk/(2*clk_div))
1359 {
1360 *encoded_divisor = 2;
1361 best_baud = clk/(2*clk_div);
1362 }
1363 else
1364 {
1365 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1366 divisor = clk*16/clk_div / baudrate;
1367 if (divisor & 1) /* Decide if to round up or down*/
1368 best_divisor = divisor /2 +1;
1369 else
1370 best_divisor = divisor/2;
1371 if(best_divisor > 0x20000)
1372 best_divisor = 0x1ffff;
1373 best_baud = clk*16/clk_div/best_divisor;
1374 if (best_baud & 1) /* Decide if to round up or down*/
1375 best_baud = best_baud /2 +1;
1376 else
1377 best_baud = best_baud /2;
1378 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1379 }
1380 return best_baud;
1381}
1382/**
1383 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1384 Function is only used internally
1385 \internal
1386*/
1387static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1388 unsigned short *value, unsigned short *index)
1389{
1390 int best_baud;
1391 unsigned long encoded_divisor;
1392
1393 if (baudrate <= 0)
1394 {
1395 // Return error
1396 return -1;
1397 }
1398
1399#define H_CLK 120000000
1400#define C_CLK 48000000
1401 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1402 {
1403 if(baudrate*10 > H_CLK /0x3fff)
1404 {
1405 /* On H Devices, use 12 000 000 Baudrate when possible
1406 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1407 three fractional bits and a 120 MHz clock
1408 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1409 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1410 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1411 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1412 }
1413 else
1414 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1415 }
1416 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
1417 {
1418 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1419 }
1420 else
1421 {
1422 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1423 }
1424 // Split into "value" and "index" values
1425 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1427 {
1428 *index = (unsigned short)(encoded_divisor >> 8);
1429 *index &= 0xFF00;
1430 *index |= ftdi->index;
1431 }
1432 else
1433 *index = (unsigned short)(encoded_divisor >> 16);
1434
1435 // Return the nearest baud rate
1436 return best_baud;
1437}
1438
1439/**
1440 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1441 * Do not use, it's only for the unit test framework
1442 **/
1443int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1444 unsigned short *value, unsigned short *index)
1445{
1446 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1447}
1448
1449/**
1450 Sets the chip baud rate
1451
1452 \param ftdi pointer to ftdi_context
1453 \param baudrate baud rate to set
1454
1455 \retval 0: all fine
1456 \retval -1: invalid baudrate
1457 \retval -2: setting baudrate failed
1458 \retval -3: USB device unavailable
1459*/
1460int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1461{
1462 unsigned short value, index;
1463 int actual_baudrate;
1464
1465 if (ftdi == NULL || ftdi->usb_dev == NULL)
1466 ftdi_error_return(-3, "USB device unavailable");
1467
1468 if (ftdi->bitbang_enabled)
1469 {
1470 baudrate = baudrate*4;
1471 }
1472
1473 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1474 if (actual_baudrate <= 0)
1475 ftdi_error_return (-1, "Silly baudrate <= 0.");
1476
1477 // Check within tolerance (about 5%)
1478 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1479 || ((actual_baudrate < baudrate)
1480 ? (actual_baudrate * 21 < baudrate * 20)
1481 : (baudrate * 21 < actual_baudrate * 20)))
1482 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1483
1484 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1485 SIO_SET_BAUDRATE_REQUEST, value,
1486 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1487 ftdi_error_return (-2, "Setting new baudrate failed");
1488
1489 ftdi->baudrate = baudrate;
1490 return 0;
1491}
1492
1493/**
1494 Set (RS232) line characteristics.
1495 The break type can only be set via ftdi_set_line_property2()
1496 and defaults to "off".
1497
1498 \param ftdi pointer to ftdi_context
1499 \param bits Number of bits
1500 \param sbit Number of stop bits
1501 \param parity Parity mode
1502
1503 \retval 0: all fine
1504 \retval -1: Setting line property failed
1505*/
1506int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1507 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1508{
1509 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1510}
1511
1512/**
1513 Set (RS232) line characteristics
1514
1515 \param ftdi pointer to ftdi_context
1516 \param bits Number of bits
1517 \param sbit Number of stop bits
1518 \param parity Parity mode
1519 \param break_type Break type
1520
1521 \retval 0: all fine
1522 \retval -1: Setting line property failed
1523 \retval -2: USB device unavailable
1524*/
1525int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1526 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1527 enum ftdi_break_type break_type)
1528{
1529 unsigned short value = bits;
1530
1531 if (ftdi == NULL || ftdi->usb_dev == NULL)
1532 ftdi_error_return(-2, "USB device unavailable");
1533
1534 switch (parity)
1535 {
1536 case NONE:
1537 value |= (0x00 << 8);
1538 break;
1539 case ODD:
1540 value |= (0x01 << 8);
1541 break;
1542 case EVEN:
1543 value |= (0x02 << 8);
1544 break;
1545 case MARK:
1546 value |= (0x03 << 8);
1547 break;
1548 case SPACE:
1549 value |= (0x04 << 8);
1550 break;
1551 }
1552
1553 switch (sbit)
1554 {
1555 case STOP_BIT_1:
1556 value |= (0x00 << 11);
1557 break;
1558 case STOP_BIT_15:
1559 value |= (0x01 << 11);
1560 break;
1561 case STOP_BIT_2:
1562 value |= (0x02 << 11);
1563 break;
1564 }
1565
1566 switch (break_type)
1567 {
1568 case BREAK_OFF:
1569 value |= (0x00 << 14);
1570 break;
1571 case BREAK_ON:
1572 value |= (0x01 << 14);
1573 break;
1574 }
1575
1576 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1577 SIO_SET_DATA_REQUEST, value,
1578 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1579 ftdi_error_return (-1, "Setting new line property failed");
1580
1581 return 0;
1582}
1583
1584/**
1585 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1586
1587 \param ftdi pointer to ftdi_context
1588 \param buf Buffer with the data
1589 \param size Size of the buffer
1590
1591 \retval -666: USB device unavailable
1592 \retval <0: error code from usb_bulk_write()
1593 \retval >0: number of bytes written
1594*/
1595int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1596{
1597 int offset = 0;
1598 int actual_length;
1599
1600 if (ftdi == NULL || ftdi->usb_dev == NULL)
1601 ftdi_error_return(-666, "USB device unavailable");
1602
1603 while (offset < size)
1604 {
1605 int write_size = ftdi->writebuffer_chunksize;
1606
1607 if (offset+write_size > size)
1608 write_size = size-offset;
1609
1610 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1611 ftdi_error_return(-1, "usb bulk write failed");
1612
1613 offset += actual_length;
1614 }
1615
1616 return offset;
1617}
1618
1619static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1620{
1621 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1622 struct ftdi_context *ftdi = tc->ftdi;
1623 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1624
1625 packet_size = ftdi->max_packet_size;
1626
1627 actual_length = transfer->actual_length;
1628
1629 if (actual_length > 2)
1630 {
1631 // skip FTDI status bytes.
1632 // Maybe stored in the future to enable modem use
1633 num_of_chunks = actual_length / packet_size;
1634 chunk_remains = actual_length % packet_size;
1635 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1636
1637 ftdi->readbuffer_offset += 2;
1638 actual_length -= 2;
1639
1640 if (actual_length > packet_size - 2)
1641 {
1642 for (i = 1; i < num_of_chunks; i++)
1643 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1644 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1645 packet_size - 2);
1646 if (chunk_remains > 2)
1647 {
1648 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1649 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1650 chunk_remains-2);
1651 actual_length -= 2*num_of_chunks;
1652 }
1653 else
1654 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1655 }
1656
1657 if (actual_length > 0)
1658 {
1659 // data still fits in buf?
1660 if (tc->offset + actual_length <= tc->size)
1661 {
1662 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1663 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1664 tc->offset += actual_length;
1665
1666 ftdi->readbuffer_offset = 0;
1667 ftdi->readbuffer_remaining = 0;
1668
1669 /* Did we read exactly the right amount of bytes? */
1670 if (tc->offset == tc->size)
1671 {
1672 //printf("read_data exact rem %d offset %d\n",
1673 //ftdi->readbuffer_remaining, offset);
1674 tc->completed = 1;
1675 return;
1676 }
1677 }
1678 else
1679 {
1680 // only copy part of the data or size <= readbuffer_chunksize
1681 int part_size = tc->size - tc->offset;
1682 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1683 tc->offset += part_size;
1684
1685 ftdi->readbuffer_offset += part_size;
1686 ftdi->readbuffer_remaining = actual_length - part_size;
1687
1688 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1689 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1690 tc->completed = 1;
1691 return;
1692 }
1693 }
1694 }
1695
1696 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1697 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1698 else
1699 {
1700 ret = libusb_submit_transfer (transfer);
1701 if (ret < 0)
1702 tc->completed = 1;
1703 }
1704}
1705
1706
1707static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1708{
1709 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1710 struct ftdi_context *ftdi = tc->ftdi;
1711
1712 tc->offset += transfer->actual_length;
1713
1714 if (tc->offset == tc->size)
1715 {
1716 tc->completed = 1;
1717 }
1718 else
1719 {
1720 int write_size = ftdi->writebuffer_chunksize;
1721 int ret;
1722
1723 if (tc->offset + write_size > tc->size)
1724 write_size = tc->size - tc->offset;
1725
1726 transfer->length = write_size;
1727 transfer->buffer = tc->buf + tc->offset;
1728
1729 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1730 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1731 else
1732 {
1733 ret = libusb_submit_transfer (transfer);
1734 if (ret < 0)
1735 tc->completed = 1;
1736 }
1737 }
1738}
1739
1740
1741/**
1742 Writes data to the chip. Does not wait for completion of the transfer
1743 nor does it make sure that the transfer was successful.
1744
1745 Use libusb 1.0 asynchronous API.
1746
1747 \param ftdi pointer to ftdi_context
1748 \param buf Buffer with the data
1749 \param size Size of the buffer
1750
1751 \retval NULL: Some error happens when submit transfer
1752 \retval !NULL: Pointer to a ftdi_transfer_control
1753*/
1754
1755struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1756{
1757 struct ftdi_transfer_control *tc;
1758 struct libusb_transfer *transfer;
1759 int write_size, ret;
1760
1761 if (ftdi == NULL || ftdi->usb_dev == NULL)
1762 return NULL;
1763
1764 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1765 if (!tc)
1766 return NULL;
1767
1768 transfer = libusb_alloc_transfer(0);
1769 if (!transfer)
1770 {
1771 free(tc);
1772 return NULL;
1773 }
1774
1775 tc->ftdi = ftdi;
1776 tc->completed = 0;
1777 tc->buf = buf;
1778 tc->size = size;
1779 tc->offset = 0;
1780
1781 if (size < (int)ftdi->writebuffer_chunksize)
1782 write_size = size;
1783 else
1784 write_size = ftdi->writebuffer_chunksize;
1785
1786 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1787 write_size, ftdi_write_data_cb, tc,
1788 ftdi->usb_write_timeout);
1789 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1790
1791 ret = libusb_submit_transfer(transfer);
1792 if (ret < 0)
1793 {
1794 libusb_free_transfer(transfer);
1795 free(tc);
1796 return NULL;
1797 }
1798 tc->transfer = transfer;
1799
1800 return tc;
1801}
1802
1803/**
1804 Reads data from the chip. Does not wait for completion of the transfer
1805 nor does it make sure that the transfer was successful.
1806
1807 Use libusb 1.0 asynchronous API.
1808
1809 \param ftdi pointer to ftdi_context
1810 \param buf Buffer with the data
1811 \param size Size of the buffer
1812
1813 \retval NULL: Some error happens when submit transfer
1814 \retval !NULL: Pointer to a ftdi_transfer_control
1815*/
1816
1817struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1818{
1819 struct ftdi_transfer_control *tc;
1820 struct libusb_transfer *transfer;
1821 int ret;
1822
1823 if (ftdi == NULL || ftdi->usb_dev == NULL)
1824 return NULL;
1825
1826 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1827 if (!tc)
1828 return NULL;
1829
1830 tc->ftdi = ftdi;
1831 tc->buf = buf;
1832 tc->size = size;
1833
1834 if (size <= (int)ftdi->readbuffer_remaining)
1835 {
1836 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1837
1838 // Fix offsets
1839 ftdi->readbuffer_remaining -= size;
1840 ftdi->readbuffer_offset += size;
1841
1842 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1843
1844 tc->completed = 1;
1845 tc->offset = size;
1846 tc->transfer = NULL;
1847 return tc;
1848 }
1849
1850 tc->completed = 0;
1851 if (ftdi->readbuffer_remaining != 0)
1852 {
1853 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1854
1855 tc->offset = ftdi->readbuffer_remaining;
1856 }
1857 else
1858 tc->offset = 0;
1859
1860 transfer = libusb_alloc_transfer(0);
1861 if (!transfer)
1862 {
1863 free (tc);
1864 return NULL;
1865 }
1866
1867 ftdi->readbuffer_remaining = 0;
1868 ftdi->readbuffer_offset = 0;
1869
1870 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1871 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1872
1873 ret = libusb_submit_transfer(transfer);
1874 if (ret < 0)
1875 {
1876 libusb_free_transfer(transfer);
1877 free (tc);
1878 return NULL;
1879 }
1880 tc->transfer = transfer;
1881
1882 return tc;
1883}
1884
1885/**
1886 Wait for completion of the transfer.
1887
1888 Use libusb 1.0 asynchronous API.
1889
1890 \param tc pointer to ftdi_transfer_control
1891
1892 \retval < 0: Some error happens
1893 \retval >= 0: Data size transferred
1894*/
1895
1896int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1897{
1898 int ret;
1899 struct timeval to = { 0, 0 };
1900 while (!tc->completed)
1901 {
1902 ret = libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1903 &to, &tc->completed);
1904 if (ret < 0)
1905 {
1906 if (ret == LIBUSB_ERROR_INTERRUPTED)
1907 continue;
1908 libusb_cancel_transfer(tc->transfer);
1909 while (!tc->completed)
1910 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1911 &to, &tc->completed) < 0)
1912 break;
1913 libusb_free_transfer(tc->transfer);
1914 free (tc);
1915 return ret;
1916 }
1917 }
1918
1919 ret = tc->offset;
1920 /**
1921 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1922 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1923 **/
1924 if (tc->transfer)
1925 {
1926 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1927 ret = -1;
1928 libusb_free_transfer(tc->transfer);
1929 }
1930 free(tc);
1931 return ret;
1932}
1933
1934/**
1935 Cancel transfer and wait for completion.
1936
1937 Use libusb 1.0 asynchronous API.
1938
1939 \param tc pointer to ftdi_transfer_control
1940 \param to pointer to timeout value or NULL for infinite
1941*/
1942
1943void ftdi_transfer_data_cancel(struct ftdi_transfer_control *tc,
1944 struct timeval * to)
1945{
1946 struct timeval tv = { 0, 0 };
1947
1948 if (!tc->completed && tc->transfer != NULL)
1949 {
1950 if (to == NULL)
1951 to = &tv;
1952
1953 libusb_cancel_transfer(tc->transfer);
1954 while (!tc->completed)
1955 {
1956 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx, to, &tc->completed) < 0)
1957 break;
1958 }
1959 }
1960
1961 if (tc->transfer)
1962 libusb_free_transfer(tc->transfer);
1963
1964 free (tc);
1965}
1966
1967/**
1968 Configure write buffer chunk size.
1969 Default is 4096.
1970
1971 \param ftdi pointer to ftdi_context
1972 \param chunksize Chunk size
1973
1974 \retval 0: all fine
1975 \retval -1: ftdi context invalid
1976*/
1977int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1978{
1979 if (ftdi == NULL)
1980 ftdi_error_return(-1, "ftdi context invalid");
1981
1982 ftdi->writebuffer_chunksize = chunksize;
1983 return 0;
1984}
1985
1986/**
1987 Get write buffer chunk size.
1988
1989 \param ftdi pointer to ftdi_context
1990 \param chunksize Pointer to store chunk size in
1991
1992 \retval 0: all fine
1993 \retval -1: ftdi context invalid
1994*/
1995int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1996{
1997 if (ftdi == NULL)
1998 ftdi_error_return(-1, "ftdi context invalid");
1999
2000 *chunksize = ftdi->writebuffer_chunksize;
2001 return 0;
2002}
2003
2004/**
2005 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
2006
2007 Automatically strips the two modem status bytes transferred during every read.
2008
2009 \param ftdi pointer to ftdi_context
2010 \param buf Buffer to store data in
2011 \param size Size of the buffer
2012
2013 \retval -666: USB device unavailable
2014 \retval <0: error code from libusb_bulk_transfer()
2015 \retval 0: no data was available
2016 \retval >0: number of bytes read
2017
2018*/
2019int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
2020{
2021 int offset = 0, ret, i, num_of_chunks, chunk_remains;
2022 int packet_size;
2023 int actual_length = 1;
2024
2025 if (ftdi == NULL || ftdi->usb_dev == NULL)
2026 ftdi_error_return(-666, "USB device unavailable");
2027
2028 // Packet size sanity check (avoid division by zero)
2029 packet_size = ftdi->max_packet_size;
2030 if (packet_size == 0)
2031 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
2032
2033 // everything we want is still in the readbuffer?
2034 if (size <= (int)ftdi->readbuffer_remaining)
2035 {
2036 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
2037
2038 // Fix offsets
2039 ftdi->readbuffer_remaining -= size;
2040 ftdi->readbuffer_offset += size;
2041
2042 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
2043
2044 return size;
2045 }
2046 // something still in the readbuffer, but not enough to satisfy 'size'?
2047 if (ftdi->readbuffer_remaining != 0)
2048 {
2049 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
2050
2051 // Fix offset
2052 offset += ftdi->readbuffer_remaining;
2053 }
2054 // do the actual USB read
2055 while (offset < size && actual_length > 0)
2056 {
2057 ftdi->readbuffer_remaining = 0;
2058 ftdi->readbuffer_offset = 0;
2059 /* returns how much received */
2060 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
2061 if (ret < 0)
2062 ftdi_error_return(ret, "usb bulk read failed");
2063
2064 if (actual_length > 2)
2065 {
2066 // skip FTDI status bytes.
2067 // Maybe stored in the future to enable modem use
2068 num_of_chunks = actual_length / packet_size;
2069 chunk_remains = actual_length % packet_size;
2070 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
2071
2072 ftdi->readbuffer_offset += 2;
2073 actual_length -= 2;
2074
2075 if (actual_length > packet_size - 2)
2076 {
2077 for (i = 1; i < num_of_chunks; i++)
2078 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2079 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
2080 packet_size - 2);
2081 if (chunk_remains > 2)
2082 {
2083 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2084 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
2085 chunk_remains-2);
2086 actual_length -= 2*num_of_chunks;
2087 }
2088 else
2089 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
2090 }
2091 }
2092 else if (actual_length <= 2)
2093 {
2094 // no more data to read?
2095 return offset;
2096 }
2097 if (actual_length > 0)
2098 {
2099 // data still fits in buf?
2100 if (offset+actual_length <= size)
2101 {
2102 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
2103 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
2104 offset += actual_length;
2105
2106 /* Did we read exactly the right amount of bytes? */
2107 if (offset == size)
2108 //printf("read_data exact rem %d offset %d\n",
2109 //ftdi->readbuffer_remaining, offset);
2110 return offset;
2111 }
2112 else
2113 {
2114 // only copy part of the data or size <= readbuffer_chunksize
2115 int part_size = size-offset;
2116 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
2117
2118 ftdi->readbuffer_offset += part_size;
2119 ftdi->readbuffer_remaining = actual_length-part_size;
2120 offset += part_size;
2121
2122 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
2123 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
2124
2125 return offset;
2126 }
2127 }
2128 }
2129 // never reached
2130 return -127;
2131}
2132
2133/**
2134 Configure read buffer chunk size.
2135 Default is 4096.
2136
2137 Automatically reallocates the buffer.
2138
2139 \param ftdi pointer to ftdi_context
2140 \param chunksize Chunk size
2141
2142 \retval 0: all fine
2143 \retval -1: ftdi context invalid
2144*/
2145int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
2146{
2147 unsigned char *new_buf;
2148
2149 if (ftdi == NULL)
2150 ftdi_error_return(-1, "ftdi context invalid");
2151
2152 // Invalidate all remaining data
2153 ftdi->readbuffer_offset = 0;
2154 ftdi->readbuffer_remaining = 0;
2155#ifdef __linux__
2156 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
2157 which is defined in libusb-1.0. Otherwise, each USB read request will
2158 be divided into multiple URBs. This will cause issues on Linux kernel
2159 older than 2.6.32. */
2160 if (chunksize > 16384)
2161 chunksize = 16384;
2162#endif
2163
2164 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
2165 ftdi_error_return(-1, "out of memory for readbuffer");
2166
2167 ftdi->readbuffer = new_buf;
2168 ftdi->readbuffer_chunksize = chunksize;
2169
2170 return 0;
2171}
2172
2173/**
2174 Get read buffer chunk size.
2175
2176 \param ftdi pointer to ftdi_context
2177 \param chunksize Pointer to store chunk size in
2178
2179 \retval 0: all fine
2180 \retval -1: FTDI context invalid
2181*/
2182int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
2183{
2184 if (ftdi == NULL)
2185 ftdi_error_return(-1, "FTDI context invalid");
2186
2187 *chunksize = ftdi->readbuffer_chunksize;
2188 return 0;
2189}
2190
2191/**
2192 Enable/disable bitbang modes.
2193
2194 \param ftdi pointer to ftdi_context
2195 \param bitmask Bitmask to configure lines.
2196 HIGH/ON value configures a line as output.
2197 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
2198
2199 \retval 0: all fine
2200 \retval -1: can't enable bitbang mode
2201 \retval -2: USB device unavailable
2202*/
2203int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
2204{
2205 unsigned short usb_val;
2206
2207 if (ftdi == NULL || ftdi->usb_dev == NULL)
2208 ftdi_error_return(-2, "USB device unavailable");
2209
2210 usb_val = bitmask; // low byte: bitmask
2211 usb_val |= (mode << 8);
2212 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2213 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
2214
2215 ftdi->bitbang_mode = mode;
2216 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
2217 return 0;
2218}
2219
2220/**
2221 Disable bitbang mode.
2222
2223 \param ftdi pointer to ftdi_context
2224
2225 \retval 0: all fine
2226 \retval -1: can't disable bitbang mode
2227 \retval -2: USB device unavailable
2228*/
2229int ftdi_disable_bitbang(struct ftdi_context *ftdi)
2230{
2231 if (ftdi == NULL || ftdi->usb_dev == NULL)
2232 ftdi_error_return(-2, "USB device unavailable");
2233
2234 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2235 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
2236
2237 ftdi->bitbang_enabled = 0;
2238 return 0;
2239}
2240
2241
2242/**
2243 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
2244
2245 \param ftdi pointer to ftdi_context
2246 \param pins Pointer to store pins into
2247
2248 \retval 0: all fine
2249 \retval -1: read pins failed
2250 \retval -2: USB device unavailable
2251*/
2252int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
2253{
2254 if (ftdi == NULL || ftdi->usb_dev == NULL)
2255 ftdi_error_return(-2, "USB device unavailable");
2256
2257 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
2258 ftdi_error_return(-1, "read pins failed");
2259
2260 return 0;
2261}
2262
2263/**
2264 Set latency timer
2265
2266 The FTDI chip keeps data in the internal buffer for a specific
2267 amount of time if the buffer is not full yet to decrease
2268 load on the usb bus.
2269
2270 \param ftdi pointer to ftdi_context
2271 \param latency Value between 1 and 255
2272
2273 \retval 0: all fine
2274 \retval -1: latency out of range
2275 \retval -2: unable to set latency timer
2276 \retval -3: USB device unavailable
2277*/
2278int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2279{
2280 unsigned short usb_val;
2281
2282 if (latency < 1)
2283 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2284
2285 if (ftdi == NULL || ftdi->usb_dev == NULL)
2286 ftdi_error_return(-3, "USB device unavailable");
2287
2288 usb_val = latency;
2289 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2290 ftdi_error_return(-2, "unable to set latency timer");
2291
2292 return 0;
2293}
2294
2295/**
2296 Get latency timer
2297
2298 \param ftdi pointer to ftdi_context
2299 \param latency Pointer to store latency value in
2300
2301 \retval 0: all fine
2302 \retval -1: unable to get latency timer
2303 \retval -2: USB device unavailable
2304*/
2305int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2306{
2307 unsigned short usb_val;
2308
2309 if (ftdi == NULL || ftdi->usb_dev == NULL)
2310 ftdi_error_return(-2, "USB device unavailable");
2311
2312 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2313 ftdi_error_return(-1, "reading latency timer failed");
2314
2315 *latency = (unsigned char)usb_val;
2316 return 0;
2317}
2318
2319/**
2320 Poll modem status information
2321
2322 This function allows the retrieve the two status bytes of the device.
2323 The device sends these bytes also as a header for each read access
2324 where they are discarded by ftdi_read_data(). The chip generates
2325 the two stripped status bytes in the absence of data every 40 ms.
2326
2327 Layout of the first byte:
2328 - B0..B3 - must be 0
2329 - B4 Clear to send (CTS)
2330 0 = inactive
2331 1 = active
2332 - B5 Data set ready (DTS)
2333 0 = inactive
2334 1 = active
2335 - B6 Ring indicator (RI)
2336 0 = inactive
2337 1 = active
2338 - B7 Receive line signal detect (RLSD)
2339 0 = inactive
2340 1 = active
2341
2342 Layout of the second byte:
2343 - B0 Data ready (DR)
2344 - B1 Overrun error (OE)
2345 - B2 Parity error (PE)
2346 - B3 Framing error (FE)
2347 - B4 Break interrupt (BI)
2348 - B5 Transmitter holding register (THRE)
2349 - B6 Transmitter empty (TEMT)
2350 - B7 Error in RCVR FIFO
2351
2352 \param ftdi pointer to ftdi_context
2353 \param status Pointer to store status information in. Must be two bytes.
2354
2355 \retval 0: all fine
2356 \retval -1: unable to retrieve status information
2357 \retval -2: USB device unavailable
2358*/
2359int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2360{
2361 char usb_val[2];
2362
2363 if (ftdi == NULL || ftdi->usb_dev == NULL)
2364 ftdi_error_return(-2, "USB device unavailable");
2365
2366 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2367 ftdi_error_return(-1, "getting modem status failed");
2368
2369 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2370
2371 return 0;
2372}
2373
2374/**
2375 Set flowcontrol for ftdi chip
2376
2377 Note: Do not use this function to enable XON/XOFF mode, use ftdi_setflowctrl_xonxoff() instead.
2378
2379 \param ftdi pointer to ftdi_context
2380 \param flowctrl flow control to use. should be
2381 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS
2382
2383 \retval 0: all fine
2384 \retval -1: set flow control failed
2385 \retval -2: USB device unavailable
2386*/
2387int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2388{
2389 if (ftdi == NULL || ftdi->usb_dev == NULL)
2390 ftdi_error_return(-2, "USB device unavailable");
2391
2392 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2393 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2394 NULL, 0, ftdi->usb_write_timeout) < 0)
2395 ftdi_error_return(-1, "set flow control failed");
2396
2397 return 0;
2398}
2399
2400/**
2401 Set XON/XOFF flowcontrol for ftdi chip
2402
2403 \param ftdi pointer to ftdi_context
2404 \param xon character code used to resume transmission
2405 \param xoff character code used to pause transmission
2406
2407 \retval 0: all fine
2408 \retval -1: set flow control failed
2409 \retval -2: USB device unavailable
2410*/
2411int ftdi_setflowctrl_xonxoff(struct ftdi_context *ftdi, unsigned char xon, unsigned char xoff)
2412{
2413 if (ftdi == NULL || ftdi->usb_dev == NULL)
2414 ftdi_error_return(-2, "USB device unavailable");
2415
2416 uint16_t xonxoff = xon | (xoff << 8);
2417 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2418 SIO_SET_FLOW_CTRL_REQUEST, xonxoff, (SIO_XON_XOFF_HS | ftdi->index),
2419 NULL, 0, ftdi->usb_write_timeout) < 0)
2420 ftdi_error_return(-1, "set flow control failed");
2421
2422 return 0;
2423}
2424
2425/**
2426 Set dtr line
2427
2428 \param ftdi pointer to ftdi_context
2429 \param state state to set line to (1 or 0)
2430
2431 \retval 0: all fine
2432 \retval -1: set dtr failed
2433 \retval -2: USB device unavailable
2434*/
2435int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2436{
2437 unsigned short usb_val;
2438
2439 if (ftdi == NULL || ftdi->usb_dev == NULL)
2440 ftdi_error_return(-2, "USB device unavailable");
2441
2442 if (state)
2443 usb_val = SIO_SET_DTR_HIGH;
2444 else
2445 usb_val = SIO_SET_DTR_LOW;
2446
2447 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2448 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2449 NULL, 0, ftdi->usb_write_timeout) < 0)
2450 ftdi_error_return(-1, "set dtr failed");
2451
2452 return 0;
2453}
2454
2455/**
2456 Set rts line
2457
2458 \param ftdi pointer to ftdi_context
2459 \param state state to set line to (1 or 0)
2460
2461 \retval 0: all fine
2462 \retval -1: set rts failed
2463 \retval -2: USB device unavailable
2464*/
2465int ftdi_setrts(struct ftdi_context *ftdi, int state)
2466{
2467 unsigned short usb_val;
2468
2469 if (ftdi == NULL || ftdi->usb_dev == NULL)
2470 ftdi_error_return(-2, "USB device unavailable");
2471
2472 if (state)
2473 usb_val = SIO_SET_RTS_HIGH;
2474 else
2475 usb_val = SIO_SET_RTS_LOW;
2476
2477 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2478 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2479 NULL, 0, ftdi->usb_write_timeout) < 0)
2480 ftdi_error_return(-1, "set of rts failed");
2481
2482 return 0;
2483}
2484
2485/**
2486 Set dtr and rts line in one pass
2487
2488 \param ftdi pointer to ftdi_context
2489 \param dtr DTR state to set line to (1 or 0)
2490 \param rts RTS state to set line to (1 or 0)
2491
2492 \retval 0: all fine
2493 \retval -1: set dtr/rts failed
2494 \retval -2: USB device unavailable
2495 */
2496int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2497{
2498 unsigned short usb_val;
2499
2500 if (ftdi == NULL || ftdi->usb_dev == NULL)
2501 ftdi_error_return(-2, "USB device unavailable");
2502
2503 if (dtr)
2504 usb_val = SIO_SET_DTR_HIGH;
2505 else
2506 usb_val = SIO_SET_DTR_LOW;
2507
2508 if (rts)
2509 usb_val |= SIO_SET_RTS_HIGH;
2510 else
2511 usb_val |= SIO_SET_RTS_LOW;
2512
2513 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2514 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2515 NULL, 0, ftdi->usb_write_timeout) < 0)
2516 ftdi_error_return(-1, "set of rts/dtr failed");
2517
2518 return 0;
2519}
2520
2521/**
2522 Set the special event character
2523
2524 \param ftdi pointer to ftdi_context
2525 \param eventch Event character
2526 \param enable 0 to disable the event character, non-zero otherwise
2527
2528 \retval 0: all fine
2529 \retval -1: unable to set event character
2530 \retval -2: USB device unavailable
2531*/
2532int ftdi_set_event_char(struct ftdi_context *ftdi,
2533 unsigned char eventch, unsigned char enable)
2534{
2535 unsigned short usb_val;
2536
2537 if (ftdi == NULL || ftdi->usb_dev == NULL)
2538 ftdi_error_return(-2, "USB device unavailable");
2539
2540 usb_val = eventch;
2541 if (enable)
2542 usb_val |= 1 << 8;
2543
2544 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2545 ftdi_error_return(-1, "setting event character failed");
2546
2547 return 0;
2548}
2549
2550/**
2551 Set error character
2552
2553 \param ftdi pointer to ftdi_context
2554 \param errorch Error character
2555 \param enable 0 to disable the error character, non-zero otherwise
2556
2557 \retval 0: all fine
2558 \retval -1: unable to set error character
2559 \retval -2: USB device unavailable
2560*/
2561int ftdi_set_error_char(struct ftdi_context *ftdi,
2562 unsigned char errorch, unsigned char enable)
2563{
2564 unsigned short usb_val;
2565
2566 if (ftdi == NULL || ftdi->usb_dev == NULL)
2567 ftdi_error_return(-2, "USB device unavailable");
2568
2569 usb_val = errorch;
2570 if (enable)
2571 usb_val |= 1 << 8;
2572
2573 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2574 ftdi_error_return(-1, "setting error character failed");
2575
2576 return 0;
2577}
2578
2579/**
2580 Init eeprom with default values for the connected device
2581 \param ftdi pointer to ftdi_context
2582 \param manufacturer String to use as Manufacturer
2583 \param product String to use as Product description
2584 \param serial String to use as Serial number description
2585
2586 \retval 0: all fine
2587 \retval -1: No struct ftdi_context
2588 \retval -2: No struct ftdi_eeprom
2589 \retval -3: No connected device or device not yet opened
2590*/
2591int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, const char * manufacturer,
2592 const char * product, const char * serial)
2593{
2594 struct ftdi_eeprom *eeprom;
2595
2596 if (ftdi == NULL)
2597 ftdi_error_return(-1, "No struct ftdi_context");
2598
2599 if (ftdi->eeprom == NULL)
2600 ftdi_error_return(-2,"No struct ftdi_eeprom");
2601
2602 eeprom = ftdi->eeprom;
2603 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2604
2605 if (ftdi->usb_dev == NULL)
2606 ftdi_error_return(-3, "No connected device or device not yet opened");
2607
2608 eeprom->vendor_id = 0x0403;
2609 eeprom->use_serial = 1;
2610 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2611 (ftdi->type == TYPE_R))
2612 eeprom->product_id = 0x6001;
2613 else if (ftdi->type == TYPE_4232H)
2614 eeprom->product_id = 0x6011;
2615 else if (ftdi->type == TYPE_232H)
2616 eeprom->product_id = 0x6014;
2617 else if (ftdi->type == TYPE_230X)
2618 eeprom->product_id = 0x6015;
2619 else
2620 eeprom->product_id = 0x6010;
2621
2622 if (ftdi->type == TYPE_AM)
2623 eeprom->usb_version = 0x0101;
2624 else
2625 eeprom->usb_version = 0x0200;
2626 eeprom->max_power = 100;
2627
2628 if (eeprom->manufacturer)
2629 free (eeprom->manufacturer);
2630 eeprom->manufacturer = NULL;
2631 if (manufacturer)
2632 {
2633 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2634 if (eeprom->manufacturer)
2635 strcpy(eeprom->manufacturer, manufacturer);
2636 }
2637
2638 if (eeprom->product)
2639 free (eeprom->product);
2640 eeprom->product = NULL;
2641 if(product)
2642 {
2643 eeprom->product = (char *)malloc(strlen(product)+1);
2644 if (eeprom->product)
2645 strcpy(eeprom->product, product);
2646 }
2647 else
2648 {
2649 const char* default_product;
2650 switch(ftdi->type)
2651 {
2652 case TYPE_AM: default_product = "AM"; break;
2653 case TYPE_BM: default_product = "BM"; break;
2654 case TYPE_2232C: default_product = "Dual RS232"; break;
2655 case TYPE_R: default_product = "FT232R USB UART"; break;
2656 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2657 case TYPE_4232H: default_product = "FT4232H"; break;
2658 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2659 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2660 default:
2661 ftdi_error_return(-3, "Unknown chip type");
2662 }
2663 eeprom->product = (char *)malloc(strlen(default_product) +1);
2664 if (eeprom->product)
2665 strcpy(eeprom->product, default_product);
2666 }
2667
2668 if (eeprom->serial)
2669 free (eeprom->serial);
2670 eeprom->serial = NULL;
2671 if (serial)
2672 {
2673 eeprom->serial = (char *)malloc(strlen(serial)+1);
2674 if (eeprom->serial)
2675 strcpy(eeprom->serial, serial);
2676 }
2677
2678 if (ftdi->type == TYPE_R)
2679 {
2680 eeprom->max_power = 90;
2681 eeprom->size = 0x80;
2682 eeprom->cbus_function[0] = CBUS_TXLED;
2683 eeprom->cbus_function[1] = CBUS_RXLED;
2684 eeprom->cbus_function[2] = CBUS_TXDEN;
2685 eeprom->cbus_function[3] = CBUS_PWREN;
2686 eeprom->cbus_function[4] = CBUS_SLEEP;
2687 }
2688 else if (ftdi->type == TYPE_230X)
2689 {
2690 eeprom->max_power = 90;
2691 eeprom->size = 0x100;
2692 eeprom->cbus_function[0] = CBUSX_TXDEN;
2693 eeprom->cbus_function[1] = CBUSX_RXLED;
2694 eeprom->cbus_function[2] = CBUSX_TXLED;
2695 eeprom->cbus_function[3] = CBUSX_SLEEP;
2696 }
2697 else
2698 {
2699 if(ftdi->type == TYPE_232H)
2700 {
2701 int i;
2702 for (i=0; i<10; i++)
2703 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2704 }
2705 eeprom->size = -1;
2706 }
2707 switch (ftdi->type)
2708 {
2709 case TYPE_AM:
2710 eeprom->release_number = 0x0200;
2711 break;
2712 case TYPE_BM:
2713 eeprom->release_number = 0x0400;
2714 break;
2715 case TYPE_2232C:
2716 eeprom->release_number = 0x0500;
2717 break;
2718 case TYPE_R:
2719 eeprom->release_number = 0x0600;
2720 break;
2721 case TYPE_2232H:
2722 eeprom->release_number = 0x0700;
2723 break;
2724 case TYPE_4232H:
2725 eeprom->release_number = 0x0800;
2726 break;
2727 case TYPE_232H:
2728 eeprom->release_number = 0x0900;
2729 break;
2730 case TYPE_230X:
2731 eeprom->release_number = 0x1000;
2732 break;
2733 default:
2734 eeprom->release_number = 0x00;
2735 }
2736 return 0;
2737}
2738
2739int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, const char * manufacturer,
2740 const char * product, const char * serial)
2741{
2742 struct ftdi_eeprom *eeprom;
2743
2744 if (ftdi == NULL)
2745 ftdi_error_return(-1, "No struct ftdi_context");
2746
2747 if (ftdi->eeprom == NULL)
2748 ftdi_error_return(-2,"No struct ftdi_eeprom");
2749
2750 eeprom = ftdi->eeprom;
2751
2752 if (ftdi->usb_dev == NULL)
2753 ftdi_error_return(-3, "No connected device or device not yet opened");
2754
2755 if (manufacturer)
2756 {
2757 if (eeprom->manufacturer)
2758 free (eeprom->manufacturer);
2759 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2760 if (eeprom->manufacturer)
2761 strcpy(eeprom->manufacturer, manufacturer);
2762 }
2763
2764 if(product)
2765 {
2766 if (eeprom->product)
2767 free (eeprom->product);
2768 eeprom->product = (char *)malloc(strlen(product)+1);
2769 if (eeprom->product)
2770 strcpy(eeprom->product, product);
2771 }
2772
2773 if (serial)
2774 {
2775 if (eeprom->serial)
2776 free (eeprom->serial);
2777 eeprom->serial = (char *)malloc(strlen(serial)+1);
2778 if (eeprom->serial)
2779 {
2780 strcpy(eeprom->serial, serial);
2781 eeprom->use_serial = 1;
2782 }
2783 }
2784 return 0;
2785}
2786
2787/**
2788 Return device ID strings from the eeprom. Device needs to be connected.
2789
2790 The parameters manufacturer, description and serial may be NULL
2791 or pointer to buffers to store the fetched strings.
2792
2793 \param ftdi pointer to ftdi_context
2794 \param manufacturer Store manufacturer string here if not NULL
2795 \param mnf_len Buffer size of manufacturer string
2796 \param product Store product description string here if not NULL
2797 \param prod_len Buffer size of product description string
2798 \param serial Store serial string here if not NULL
2799 \param serial_len Buffer size of serial string
2800
2801 \retval 0: all fine
2802 \retval -1: ftdi context invalid
2803 \retval -2: ftdi eeprom buffer invalid
2804*/
2805int ftdi_eeprom_get_strings(struct ftdi_context *ftdi,
2806 char *manufacturer, int mnf_len,
2807 char *product, int prod_len,
2808 char *serial, int serial_len)
2809{
2810 struct ftdi_eeprom *eeprom;
2811
2812 if (ftdi == NULL)
2813 ftdi_error_return(-1, "No struct ftdi_context");
2814 if (ftdi->eeprom == NULL)
2815 ftdi_error_return(-2, "No struct ftdi_eeprom");
2816
2817 eeprom = ftdi->eeprom;
2818
2819 if (manufacturer)
2820 {
2821 strncpy(manufacturer, eeprom->manufacturer, mnf_len);
2822 if (mnf_len > 0)
2823 manufacturer[mnf_len - 1] = '\0';
2824 }
2825
2826 if (product)
2827 {
2828 strncpy(product, eeprom->product, prod_len);
2829 if (prod_len > 0)
2830 product[prod_len - 1] = '\0';
2831 }
2832
2833 if (serial)
2834 {
2835 strncpy(serial, eeprom->serial, serial_len);
2836 if (serial_len > 0)
2837 serial[serial_len - 1] = '\0';
2838 }
2839
2840 return 0;
2841}
2842
2843/*FTD2XX doesn't check for values not fitting in the ACBUS Signal options*/
2844void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2845{
2846 int i;
2847 for(i=0; i<5; i++)
2848 {
2849 int mode_low, mode_high;
2850 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2851 mode_low = CBUSH_TRISTATE;
2852 else
2853 mode_low = eeprom->cbus_function[2*i];
2854 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2855 mode_high = CBUSH_TRISTATE;
2856 else
2857 mode_high = eeprom->cbus_function[2*i+1];
2858
2859 output[0x18+i] = (mode_high <<4) | mode_low;
2860 }
2861}
2862/* Return the bits for the encoded EEPROM Structure of a requested Mode
2863 *
2864 */
2865static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2866{
2867 switch (chip)
2868 {
2869 case TYPE_2232H:
2870 case TYPE_2232C:
2871 {
2872 switch (type)
2873 {
2874 case CHANNEL_IS_UART: return 0;
2875 case CHANNEL_IS_FIFO: return 0x01;
2876 case CHANNEL_IS_OPTO: return 0x02;
2877 case CHANNEL_IS_CPU : return 0x04;
2878 default: return 0;
2879 }
2880 }
2881 case TYPE_232H:
2882 {
2883 switch (type)
2884 {
2885 case CHANNEL_IS_UART : return 0;
2886 case CHANNEL_IS_FIFO : return 0x01;
2887 case CHANNEL_IS_OPTO : return 0x02;
2888 case CHANNEL_IS_CPU : return 0x04;
2889 case CHANNEL_IS_FT1284 : return 0x08;
2890 default: return 0;
2891 }
2892 }
2893 case TYPE_R:
2894 {
2895 switch (type)
2896 {
2897 case CHANNEL_IS_UART : return 0;
2898 case CHANNEL_IS_FIFO : return 0x01;
2899 default: return 0;
2900 }
2901 }
2902 case TYPE_230X: /* FT230X is only UART */
2903 default: return 0;
2904 }
2905 return 0;
2906}
2907
2908/**
2909 Build binary buffer from ftdi_eeprom structure.
2910 Output is suitable for ftdi_write_eeprom().
2911
2912 \param ftdi pointer to ftdi_context
2913
2914 \retval >=0: size of eeprom user area in bytes
2915 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2916 \retval -2: Invalid eeprom or ftdi pointer
2917 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2918 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2919 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2920 \retval -6: No connected EEPROM or EEPROM Type unknown
2921*/
2922int ftdi_eeprom_build(struct ftdi_context *ftdi)
2923{
2924 unsigned char i, j, eeprom_size_mask;
2925 unsigned short checksum, value;
2926 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2927 int user_area_size, free_start, free_end;
2928 struct ftdi_eeprom *eeprom;
2929 unsigned char * output;
2930
2931 if (ftdi == NULL)
2932 ftdi_error_return(-2,"No context");
2933 if (ftdi->eeprom == NULL)
2934 ftdi_error_return(-2,"No eeprom structure");
2935
2936 eeprom= ftdi->eeprom;
2937 output = eeprom->buf;
2938
2939 if (eeprom->chip == -1)
2940 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2941
2942 if (eeprom->size == -1)
2943 {
2944 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2945 eeprom->size = 0x100;
2946 else
2947 eeprom->size = 0x80;
2948 }
2949
2950 if (eeprom->manufacturer != NULL)
2951 manufacturer_size = strlen(eeprom->manufacturer);
2952 if (eeprom->product != NULL)
2953 product_size = strlen(eeprom->product);
2954 if (eeprom->serial != NULL)
2955 serial_size = strlen(eeprom->serial);
2956
2957 // eeprom size check
2958 switch (ftdi->type)
2959 {
2960 case TYPE_AM:
2961 case TYPE_BM:
2962 case TYPE_R:
2963 user_area_size = 96; // base size for strings (total of 48 characters)
2964 break;
2965 case TYPE_2232C:
2966 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2967 break;
2968 case TYPE_230X:
2969 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2970 break;
2971 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2972 case TYPE_4232H:
2973 user_area_size = 86;
2974 break;
2975 case TYPE_232H:
2976 user_area_size = 80;
2977 break;
2978 default:
2979 user_area_size = 0;
2980 break;
2981 }
2982 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2983
2984 if (user_area_size < 0)
2985 ftdi_error_return(-1,"eeprom size exceeded");
2986
2987 // empty eeprom
2988 if (ftdi->type == TYPE_230X)
2989 {
2990 /* FT230X have a reserved section in the middle of the MTP,
2991 which cannot be written to, but must be included in the checksum */
2992 memset(ftdi->eeprom->buf, 0, 0x80);
2993 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2994 }
2995 else
2996 {
2997 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2998 }
2999
3000 // Bytes and Bits set for all Types
3001
3002 // Addr 02: Vendor ID
3003 output[0x02] = eeprom->vendor_id;
3004 output[0x03] = eeprom->vendor_id >> 8;
3005
3006 // Addr 04: Product ID
3007 output[0x04] = eeprom->product_id;
3008 output[0x05] = eeprom->product_id >> 8;
3009
3010 // Addr 06: Device release number (0400h for BM features)
3011 output[0x06] = eeprom->release_number;
3012 output[0x07] = eeprom->release_number >> 8;
3013
3014 // Addr 08: Config descriptor
3015 // Bit 7: always 1
3016 // Bit 6: 1 if this device is self powered, 0 if bus powered
3017 // Bit 5: 1 if this device uses remote wakeup
3018 // Bit 4-0: reserved - 0
3019 j = 0x80;
3020 if (eeprom->self_powered)
3021 j |= 0x40;
3022 if (eeprom->remote_wakeup)
3023 j |= 0x20;
3024 output[0x08] = j;
3025
3026 // Addr 09: Max power consumption: max power = value * 2 mA
3027 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
3028
3029 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
3030 {
3031 // Addr 0A: Chip configuration
3032 // Bit 7: 0 - reserved
3033 // Bit 6: 0 - reserved
3034 // Bit 5: 0 - reserved
3035 // Bit 4: 1 - Change USB version
3036 // Bit 3: 1 - Use the serial number string
3037 // Bit 2: 1 - Enable suspend pull downs for lower power
3038 // Bit 1: 1 - Out EndPoint is Isochronous
3039 // Bit 0: 1 - In EndPoint is Isochronous
3040 //
3041 j = 0;
3042 if (eeprom->in_is_isochronous)
3043 j = j | 1;
3044 if (eeprom->out_is_isochronous)
3045 j = j | 2;
3046 output[0x0A] = j;
3047 }
3048
3049 // Dynamic content
3050 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
3051 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
3052 // 0xa0 (TYPE_232H)
3053 i = 0;
3054 switch (ftdi->type)
3055 {
3056 case TYPE_2232H:
3057 case TYPE_4232H:
3058 i += 2;
3059 /* Fall through*/
3060 case TYPE_R:
3061 i += 2;
3062 /* Fall through*/
3063 case TYPE_2232C:
3064 i += 2;
3065 /* Fall through*/
3066 case TYPE_AM:
3067 case TYPE_BM:
3068 i += 0x94;
3069 break;
3070 case TYPE_232H:
3071 case TYPE_230X:
3072 i = 0xa0;
3073 break;
3074 }
3075 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
3076 eeprom_size_mask = eeprom->size -1;
3077 free_end = i & eeprom_size_mask;
3078
3079 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3080 // Addr 0F: Length of manufacturer string
3081 // Output manufacturer
3082 output[0x0E] = i; // calculate offset
3083 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
3084 output[i & eeprom_size_mask] = 0x03, i++; // type: string
3085 for (j = 0; j < manufacturer_size; j++)
3086 {
3087 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
3088 output[i & eeprom_size_mask] = 0x00, i++;
3089 }
3090 output[0x0F] = manufacturer_size*2 + 2;
3091
3092 // Addr 10: Offset of the product string + 0x80, calculated later
3093 // Addr 11: Length of product string
3094 output[0x10] = i | 0x80; // calculate offset
3095 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
3096 output[i & eeprom_size_mask] = 0x03, i++;
3097 for (j = 0; j < product_size; j++)
3098 {
3099 output[i & eeprom_size_mask] = eeprom->product[j], i++;
3100 output[i & eeprom_size_mask] = 0x00, i++;
3101 }
3102 output[0x11] = product_size*2 + 2;
3103
3104 // Addr 12: Offset of the serial string + 0x80, calculated later
3105 // Addr 13: Length of serial string
3106 output[0x12] = i | 0x80; // calculate offset
3107 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
3108 output[i & eeprom_size_mask] = 0x03, i++;
3109 for (j = 0; j < serial_size; j++)
3110 {
3111 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
3112 output[i & eeprom_size_mask] = 0x00, i++;
3113 }
3114
3115 // Legacy port name and PnP fields for FT2232 and newer chips
3116 // It doesn't appear when written with FT_Prog for FT4232H chip.
3117 if (ftdi->type > TYPE_BM && ftdi->type != TYPE_4232H)
3118 {
3119 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
3120 i++;
3121 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
3122 i++;
3123 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
3124 i++;
3125 }
3126
3127 output[0x13] = serial_size*2 + 2;
3128
3129 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
3130 {
3131 if (eeprom->use_serial)
3132 output[0x0A] |= USE_SERIAL_NUM;
3133 else
3134 output[0x0A] &= ~USE_SERIAL_NUM;
3135 }
3136
3137 /* Bytes and Bits specific to (some) types
3138 Write linear, as this allows easier fixing*/
3139 switch (ftdi->type)
3140 {
3141 case TYPE_AM:
3142 break;
3143 case TYPE_BM:
3144 output[0x0C] = eeprom->usb_version & 0xff;
3145 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3146 if (eeprom->use_usb_version)
3147 output[0x0A] |= USE_USB_VERSION_BIT;
3148 else
3149 output[0x0A] &= ~USE_USB_VERSION_BIT;
3150
3151 break;
3152 case TYPE_2232C:
3153
3154 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
3155 if (eeprom->channel_a_driver)
3156 output[0x00] |= DRIVER_VCP;
3157 else
3158 output[0x00] &= ~DRIVER_VCP;
3159
3160 if (eeprom->high_current_a)
3161 output[0x00] |= HIGH_CURRENT_DRIVE;
3162 else
3163 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3164
3165 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
3166 if (eeprom->channel_b_driver)
3167 output[0x01] |= DRIVER_VCP;
3168 else
3169 output[0x01] &= ~DRIVER_VCP;
3170
3171 if (eeprom->high_current_b)
3172 output[0x01] |= HIGH_CURRENT_DRIVE;
3173 else
3174 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3175
3176 if (eeprom->in_is_isochronous)
3177 output[0x0A] |= 0x1;
3178 else
3179 output[0x0A] &= ~0x1;
3180 if (eeprom->out_is_isochronous)
3181 output[0x0A] |= 0x2;
3182 else
3183 output[0x0A] &= ~0x2;
3184 if (eeprom->suspend_pull_downs)
3185 output[0x0A] |= 0x4;
3186 else
3187 output[0x0A] &= ~0x4;
3188 if (eeprom->use_usb_version)
3189 output[0x0A] |= USE_USB_VERSION_BIT;
3190 else
3191 output[0x0A] &= ~USE_USB_VERSION_BIT;
3192
3193 output[0x0C] = eeprom->usb_version & 0xff;
3194 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3195 output[0x14] = eeprom->chip;
3196 break;
3197 case TYPE_R:
3198 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_R);
3199 if (eeprom->high_current)
3200 output[0x00] |= HIGH_CURRENT_DRIVE_R;
3201
3202 /* Field is inverted for TYPE_R: Bit 00.3 set to 1 is D2XX, VCP is 0 */
3203 if (eeprom->channel_a_driver)
3204 output[0x00] &= ~DRIVER_VCP;
3205 else
3206 output[0x00] |= DRIVER_VCP;
3207
3208 if (eeprom->external_oscillator)
3209 output[0x00] |= 0x02;
3210 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
3211
3212 if (eeprom->suspend_pull_downs)
3213 output[0x0A] |= 0x4;
3214 else
3215 output[0x0A] &= ~0x4;
3216 output[0x0B] = eeprom->invert;
3217 output[0x0C] = eeprom->usb_version & 0xff;
3218 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3219
3220 if (eeprom->cbus_function[0] > CBUS_BB_RD)
3221 output[0x14] = CBUS_TXLED;
3222 else
3223 output[0x14] = eeprom->cbus_function[0];
3224
3225 if (eeprom->cbus_function[1] > CBUS_BB_RD)
3226 output[0x14] |= CBUS_RXLED<<4;
3227 else
3228 output[0x14] |= eeprom->cbus_function[1]<<4;
3229
3230 if (eeprom->cbus_function[2] > CBUS_BB_RD)
3231 output[0x15] = CBUS_TXDEN;
3232 else
3233 output[0x15] = eeprom->cbus_function[2];
3234
3235 if (eeprom->cbus_function[3] > CBUS_BB_RD)
3236 output[0x15] |= CBUS_PWREN<<4;
3237 else
3238 output[0x15] |= eeprom->cbus_function[3]<<4;
3239
3240 if (eeprom->cbus_function[4] > CBUS_CLK6)
3241 output[0x16] = CBUS_SLEEP;
3242 else
3243 output[0x16] = eeprom->cbus_function[4];
3244 break;
3245 case TYPE_2232H:
3246 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
3247 if (eeprom->channel_a_driver)
3248 output[0x00] |= DRIVER_VCP;
3249 else
3250 output[0x00] &= ~DRIVER_VCP;
3251
3252 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
3253 if (eeprom->channel_b_driver)
3254 output[0x01] |= DRIVER_VCP;
3255 else
3256 output[0x01] &= ~DRIVER_VCP;
3257
3258 if (eeprom->suspend_dbus7)
3259 output[0x01] |= SUSPEND_DBUS7_BIT;
3260 else
3261 output[0x01] &= ~SUSPEND_DBUS7_BIT;
3262
3263 if (eeprom->suspend_pull_downs)
3264 output[0x0A] |= 0x4;
3265 else
3266 output[0x0A] &= ~0x4;
3267
3268 if (eeprom->group0_drive > DRIVE_16MA)
3269 output[0x0c] |= DRIVE_16MA;
3270 else
3271 output[0x0c] |= eeprom->group0_drive;
3272 if (eeprom->group0_schmitt)
3273 output[0x0c] |= IS_SCHMITT;
3274 if (eeprom->group0_slew)
3275 output[0x0c] |= SLOW_SLEW;
3276
3277 if (eeprom->group1_drive > DRIVE_16MA)
3278 output[0x0c] |= DRIVE_16MA<<4;
3279 else
3280 output[0x0c] |= eeprom->group1_drive<<4;
3281 if (eeprom->group1_schmitt)
3282 output[0x0c] |= IS_SCHMITT<<4;
3283 if (eeprom->group1_slew)
3284 output[0x0c] |= SLOW_SLEW<<4;
3285
3286 if (eeprom->group2_drive > DRIVE_16MA)
3287 output[0x0d] |= DRIVE_16MA;
3288 else
3289 output[0x0d] |= eeprom->group2_drive;
3290 if (eeprom->group2_schmitt)
3291 output[0x0d] |= IS_SCHMITT;
3292 if (eeprom->group2_slew)
3293 output[0x0d] |= SLOW_SLEW;
3294
3295 if (eeprom->group3_drive > DRIVE_16MA)
3296 output[0x0d] |= DRIVE_16MA<<4;
3297 else
3298 output[0x0d] |= eeprom->group3_drive<<4;
3299 if (eeprom->group3_schmitt)
3300 output[0x0d] |= IS_SCHMITT<<4;
3301 if (eeprom->group3_slew)
3302 output[0x0d] |= SLOW_SLEW<<4;
3303
3304 output[0x18] = eeprom->chip;
3305
3306 break;
3307 case TYPE_4232H:
3308 if (eeprom->channel_a_driver)
3309 output[0x00] |= DRIVER_VCP;
3310 else
3311 output[0x00] &= ~DRIVER_VCP;
3312 if (eeprom->channel_b_driver)
3313 output[0x01] |= DRIVER_VCP;
3314 else
3315 output[0x01] &= ~DRIVER_VCP;
3316 if (eeprom->channel_c_driver)
3317 output[0x00] |= (DRIVER_VCP << 4);
3318 else
3319 output[0x00] &= ~(DRIVER_VCP << 4);
3320 if (eeprom->channel_d_driver)
3321 output[0x01] |= (DRIVER_VCP << 4);
3322 else
3323 output[0x01] &= ~(DRIVER_VCP << 4);
3324
3325 if (eeprom->suspend_pull_downs)
3326 output[0x0a] |= 0x4;
3327 else
3328 output[0x0a] &= ~0x4;
3329
3330 if (eeprom->channel_a_rs485enable)
3331 output[0x0b] |= CHANNEL_IS_RS485 << 0;
3332 else
3333 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
3334 if (eeprom->channel_b_rs485enable)
3335 output[0x0b] |= CHANNEL_IS_RS485 << 1;
3336 else
3337 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
3338 if (eeprom->channel_c_rs485enable)
3339 output[0x0b] |= CHANNEL_IS_RS485 << 2;
3340 else
3341 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
3342 if (eeprom->channel_d_rs485enable)
3343 output[0x0b] |= CHANNEL_IS_RS485 << 3;
3344 else
3345 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
3346
3347 if (eeprom->group0_drive > DRIVE_16MA)
3348 output[0x0c] |= DRIVE_16MA;
3349 else
3350 output[0x0c] |= eeprom->group0_drive;
3351 if (eeprom->group0_schmitt)
3352 output[0x0c] |= IS_SCHMITT;
3353 if (eeprom->group0_slew)
3354 output[0x0c] |= SLOW_SLEW;
3355
3356 if (eeprom->group1_drive > DRIVE_16MA)
3357 output[0x0c] |= DRIVE_16MA<<4;
3358 else
3359 output[0x0c] |= eeprom->group1_drive<<4;
3360 if (eeprom->group1_schmitt)
3361 output[0x0c] |= IS_SCHMITT<<4;
3362 if (eeprom->group1_slew)
3363 output[0x0c] |= SLOW_SLEW<<4;
3364
3365 if (eeprom->group2_drive > DRIVE_16MA)
3366 output[0x0d] |= DRIVE_16MA;
3367 else
3368 output[0x0d] |= eeprom->group2_drive;
3369 if (eeprom->group2_schmitt)
3370 output[0x0d] |= IS_SCHMITT;
3371 if (eeprom->group2_slew)
3372 output[0x0d] |= SLOW_SLEW;
3373
3374 if (eeprom->group3_drive > DRIVE_16MA)
3375 output[0x0d] |= DRIVE_16MA<<4;
3376 else
3377 output[0x0d] |= eeprom->group3_drive<<4;
3378 if (eeprom->group3_schmitt)
3379 output[0x0d] |= IS_SCHMITT<<4;
3380 if (eeprom->group3_slew)
3381 output[0x0d] |= SLOW_SLEW<<4;
3382
3383 output[0x18] = eeprom->chip;
3384
3385 break;
3386 case TYPE_232H:
3387 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3388 if (eeprom->channel_a_driver)
3389 output[0x00] |= DRIVER_VCPH;
3390 else
3391 output[0x00] &= ~DRIVER_VCPH;
3392
3393 if (eeprom->powersave)
3394 output[0x01] |= POWER_SAVE_DISABLE_H;
3395 else
3396 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3397
3398 if (eeprom->suspend_pull_downs)
3399 output[0x0a] |= 0x4;
3400 else
3401 output[0x0a] &= ~0x4;
3402
3403 if (eeprom->clock_polarity)
3404 output[0x01] |= FT1284_CLK_IDLE_STATE;
3405 else
3406 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3407 if (eeprom->data_order)
3408 output[0x01] |= FT1284_DATA_LSB;
3409 else
3410 output[0x01] &= ~FT1284_DATA_LSB;
3411 if (eeprom->flow_control)
3412 output[0x01] |= FT1284_FLOW_CONTROL;
3413 else
3414 output[0x01] &= ~FT1284_FLOW_CONTROL;
3415
3416 if (eeprom->group0_drive > DRIVE_16MA)
3417 output[0x0c] |= DRIVE_16MA;
3418 else
3419 output[0x0c] |= eeprom->group0_drive;
3420 if (eeprom->group0_schmitt)
3421 output[0x0c] |= IS_SCHMITT;
3422 if (eeprom->group0_slew)
3423 output[0x0c] |= SLOW_SLEW;
3424
3425 if (eeprom->group1_drive > DRIVE_16MA)
3426 output[0x0d] |= DRIVE_16MA;
3427 else
3428 output[0x0d] |= eeprom->group1_drive;
3429 if (eeprom->group1_schmitt)
3430 output[0x0d] |= IS_SCHMITT;
3431 if (eeprom->group1_slew)
3432 output[0x0d] |= SLOW_SLEW;
3433
3434 set_ft232h_cbus(eeprom, output);
3435
3436 output[0x1e] = eeprom->chip;
3437 /* FIXME: Build FT232H specific EEPROM settings */
3438 break;
3439 case TYPE_230X:
3440 output[0x00] = 0x80; /* Actually, leave the default value */
3441 /*FIXME: Make DBUS & CBUS Control configurable*/
3442 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
3443 for (j = 0; j <= 6; j++)
3444 {
3445 output[0x1a + j] = eeprom->cbus_function[j];
3446 }
3447 output[0x0b] = eeprom->invert;
3448 break;
3449 }
3450
3451 /* First address without use */
3452 free_start = 0;
3453 switch (ftdi->type)
3454 {
3455 case TYPE_230X:
3456 free_start += 2;
3457 /* Fall through*/
3458 case TYPE_232H:
3459 free_start += 6;
3460 /* Fall through*/
3461 case TYPE_2232H:
3462 case TYPE_4232H:
3463 free_start += 2;
3464 /* Fall through*/
3465 case TYPE_R:
3466 free_start += 2;
3467 /* Fall through*/
3468 case TYPE_2232C:
3469 free_start++;
3470 /* Fall through*/
3471 case TYPE_AM:
3472 case TYPE_BM:
3473 free_start += 0x14;
3474 }
3475
3476 /* Arbitrary user data */
3477 if (eeprom->user_data && eeprom->user_data_size >= 0)
3478 {
3479 if (eeprom->user_data_addr < free_start)
3480 fprintf(stderr,"Warning, user data starts inside the generated data!\n");
3481 if (eeprom->user_data_addr + eeprom->user_data_size >= free_end)
3482 fprintf(stderr,"Warning, user data overlaps the strings area!\n");
3483 if (eeprom->user_data_addr + eeprom->user_data_size > eeprom->size)
3484 ftdi_error_return(-1,"eeprom size exceeded");
3485 memcpy(output + eeprom->user_data_addr, eeprom->user_data, eeprom->user_data_size);
3486 }
3487
3488 // calculate checksum
3489 checksum = 0xAAAA;
3490
3491 for (i = 0; i < eeprom->size/2-1; i++)
3492 {
3493 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3494 {
3495 /* FT230X has a user section in the MTP which is not part of the checksum */
3496 i = 0x40;
3497 }
3498 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3499 uint16_t data;
3500 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3501 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3502 i = 0x50;
3503 }
3504 value = data;
3505 }
3506 else {
3507 value = output[i*2];
3508 value += output[(i*2)+1] << 8;
3509 }
3510 checksum = value^checksum;
3511 checksum = (checksum << 1) | (checksum >> 15);
3512 }
3513
3514 output[eeprom->size-2] = checksum;
3515 output[eeprom->size-1] = checksum >> 8;
3516
3517 eeprom->initialized_for_connected_device = 1;
3518 return user_area_size;
3519}
3520/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3521 * EEPROM structure
3522 *
3523 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3524 */
3525static unsigned char bit2type(unsigned char bits)
3526{
3527 switch (bits)
3528 {
3529 case 0: return CHANNEL_IS_UART;
3530 case 1: return CHANNEL_IS_FIFO;
3531 case 2: return CHANNEL_IS_OPTO;
3532 case 4: return CHANNEL_IS_CPU;
3533 case 8: return CHANNEL_IS_FT1284;
3534 default:
3535 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3536 bits);
3537 }
3538 return 0;
3539}
3540/* Decode 230X / 232R type chips invert bits
3541 * Prints directly to stdout.
3542*/
3543static void print_inverted_bits(int invert)
3544{
3545 const char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3546 int i;
3547
3548 fprintf(stdout,"Inverted bits:");
3549 for (i=0; i<8; i++)
3550 if ((invert & (1<<i)) == (1<<i))
3551 fprintf(stdout," %s",r_bits[i]);
3552
3553 fprintf(stdout,"\n");
3554}
3555/**
3556 Decode binary EEPROM image into an ftdi_eeprom structure.
3557
3558 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3559
3560 \param ftdi pointer to ftdi_context
3561 \param verbose Decode EEPROM on stdout
3562
3563 \retval 0: all fine
3564 \retval -1: something went wrong
3565
3566 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3567 FIXME: Strings are malloc'ed here and should be freed somewhere
3568*/
3569int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3570{
3571 int i, j;
3572 unsigned short checksum, eeprom_checksum, value;
3573 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3574 int eeprom_size;
3575 struct ftdi_eeprom *eeprom;
3576 unsigned char *buf = NULL;
3577
3578 if (ftdi == NULL)
3579 ftdi_error_return(-1,"No context");
3580 if (ftdi->eeprom == NULL)
3581 ftdi_error_return(-1,"No eeprom structure");
3582
3583 eeprom = ftdi->eeprom;
3584 eeprom_size = eeprom->size;
3585 buf = ftdi->eeprom->buf;
3586
3587 // Addr 02: Vendor ID
3588 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3589
3590 // Addr 04: Product ID
3591 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3592
3593 // Addr 06: Device release number
3594 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3595
3596 // Addr 08: Config descriptor
3597 // Bit 7: always 1
3598 // Bit 6: 1 if this device is self powered, 0 if bus powered
3599 // Bit 5: 1 if this device uses remote wakeup
3600 eeprom->self_powered = !!(buf[0x08] & 0x40);
3601 eeprom->remote_wakeup = !!(buf[0x08] & 0x20);
3602
3603 // Addr 09: Max power consumption: max power = value * 2 mA
3604 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3605
3606 // Addr 0A: Chip configuration
3607 // Bit 7: 0 - reserved
3608 // Bit 6: 0 - reserved
3609 // Bit 5: 0 - reserved
3610 // Bit 4: 1 - Change USB version on BM and 2232C
3611 // Bit 3: 1 - Use the serial number string
3612 // Bit 2: 1 - Enable suspend pull downs for lower power
3613 // Bit 1: 1 - Out EndPoint is Isochronous
3614 // Bit 0: 1 - In EndPoint is Isochronous
3615 //
3616 eeprom->in_is_isochronous = !!(buf[0x0A]&0x01);
3617 eeprom->out_is_isochronous = !!(buf[0x0A]&0x02);
3618 eeprom->suspend_pull_downs = !!(buf[0x0A]&0x04);
3619 eeprom->use_serial = !!(buf[0x0A] & USE_SERIAL_NUM);
3620 eeprom->use_usb_version = !!(buf[0x0A] & USE_USB_VERSION_BIT);
3621
3622 // Addr 0C: USB version low byte when 0x0A
3623 // Addr 0D: USB version high byte when 0x0A
3624 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3625
3626 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3627 // Addr 0F: Length of manufacturer string
3628 manufacturer_size = buf[0x0F]/2;
3629 if (eeprom->manufacturer)
3630 free(eeprom->manufacturer);
3631 if (manufacturer_size > 0)
3632 {
3633 eeprom->manufacturer = (char *)malloc(manufacturer_size);
3634 if (eeprom->manufacturer)
3635 {
3636 // Decode manufacturer
3637 i = buf[0x0E] & (eeprom_size -1); // offset
3638 for (j=0; j<manufacturer_size-1; j++)
3639 {
3640 eeprom->manufacturer[j] = buf[2*j+i+2];
3641 }
3642 eeprom->manufacturer[j] = '\0';
3643 }
3644 }
3645 else eeprom->manufacturer = NULL;
3646
3647 // Addr 10: Offset of the product string + 0x80, calculated later
3648 // Addr 11: Length of product string
3649 if (eeprom->product)
3650 free(eeprom->product);
3651 product_size = buf[0x11]/2;
3652 if (product_size > 0)
3653 {
3654 eeprom->product = (char *)malloc(product_size);
3655 if (eeprom->product)
3656 {
3657 // Decode product name
3658 i = buf[0x10] & (eeprom_size -1); // offset
3659 for (j=0; j<product_size-1; j++)
3660 {
3661 eeprom->product[j] = buf[2*j+i+2];
3662 }
3663 eeprom->product[j] = '\0';
3664 }
3665 }
3666 else eeprom->product = NULL;
3667
3668 // Addr 12: Offset of the serial string + 0x80, calculated later
3669 // Addr 13: Length of serial string
3670 if (eeprom->serial)
3671 free(eeprom->serial);
3672 serial_size = buf[0x13]/2;
3673 if (serial_size > 0)
3674 {
3675 eeprom->serial = (char *)malloc(serial_size);
3676 if (eeprom->serial)
3677 {
3678 // Decode serial
3679 i = buf[0x12] & (eeprom_size -1); // offset
3680 for (j=0; j<serial_size-1; j++)
3681 {
3682 eeprom->serial[j] = buf[2*j+i+2];
3683 }
3684 eeprom->serial[j] = '\0';
3685 }
3686 }
3687 else eeprom->serial = NULL;
3688
3689 // verify checksum
3690 checksum = 0xAAAA;
3691
3692 for (i = 0; i < eeprom_size/2-1; i++)
3693 {
3694 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3695 {
3696 /* FT230X has a user section in the MTP which is not part of the checksum */
3697 i = 0x40;
3698 }
3699 value = buf[i*2];
3700 value += buf[(i*2)+1] << 8;
3701
3702 checksum = value^checksum;
3703 checksum = (checksum << 1) | (checksum >> 15);
3704 }
3705
3706 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3707
3708 if (eeprom_checksum != checksum)
3709 {
3710 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3711 ftdi_error_return(-1,"EEPROM checksum error");
3712 }
3713
3714 eeprom->channel_a_type = 0;
3715 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3716 {
3717 eeprom->chip = -1;
3718 }
3719 else if (ftdi->type == TYPE_2232C)
3720 {
3721 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3722 eeprom->channel_a_driver = !!(buf[0x00] & DRIVER_VCP);
3723 eeprom->high_current_a = !!(buf[0x00] & HIGH_CURRENT_DRIVE);
3724 eeprom->channel_b_type = buf[0x01] & 0x7;
3725 eeprom->channel_b_driver = !!(buf[0x01] & DRIVER_VCP);
3726 eeprom->high_current_b = !!(buf[0x01] & HIGH_CURRENT_DRIVE);
3727 eeprom->chip = buf[0x14];
3728 }
3729 else if (ftdi->type == TYPE_R)
3730 {
3731 /* TYPE_R flags D2XX, not VCP as all others */
3732 eeprom->channel_a_driver = !(buf[0x00] & DRIVER_VCP); /* note: inverted flag, use a single NOT */
3733 eeprom->high_current = !!(buf[0x00] & HIGH_CURRENT_DRIVE_R);
3734 eeprom->external_oscillator = !!(buf[0x00] & 0x02);
3735 if ( (buf[0x01]&0x40) != 0x40)
3736 fprintf(stderr,
3737 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3738 " If this happened with the\n"
3739 " EEPROM programmed by FTDI tools, please report "
3740 "to libftdi@developer.intra2net.com\n");
3741
3742 eeprom->chip = buf[0x16];
3743 // Addr 0B: Invert data lines
3744 // Works only on FT232R, not FT245R, but no way to distinguish
3745 eeprom->invert = buf[0x0B]; /* note: not a bitflag */
3746 // Addr 14: CBUS function: CBUS0, CBUS1
3747 // Addr 15: CBUS function: CBUS2, CBUS3
3748 // Addr 16: CBUS function: CBUS5
3749 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3750 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3751 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3752 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3753 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3754 }
3755 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3756 {
3757 eeprom->channel_a_driver = !!(buf[0x00] & DRIVER_VCP);
3758 eeprom->channel_b_driver = !!(buf[0x01] & DRIVER_VCP);
3759
3760 if (ftdi->type == TYPE_2232H)
3761 {
3762 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3763 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3764 eeprom->suspend_dbus7 = !!(buf[0x01] & SUSPEND_DBUS7_BIT);
3765 }
3766 else
3767 {
3768 eeprom->channel_c_driver = !!((buf[0x00] >> 4) & DRIVER_VCP);
3769 eeprom->channel_d_driver = !!((buf[0x01] >> 4) & DRIVER_VCP);
3770 eeprom->channel_a_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 0));
3771 eeprom->channel_b_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 1));
3772 eeprom->channel_c_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 2));
3773 eeprom->channel_d_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 3));
3774 }
3775
3776 eeprom->chip = buf[0x18];
3777 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA; /* not a bitflag */
3778 eeprom->group0_schmitt = !!(buf[0x0c] & IS_SCHMITT);
3779 eeprom->group0_slew = !!(buf[0x0c] & SLOW_SLEW);
3780 eeprom->group1_drive = (buf[0x0c] >> 4) & DRIVE_16MA; /* not a bitflag */
3781 eeprom->group1_schmitt = !!((buf[0x0c] >> 4) & IS_SCHMITT);
3782 eeprom->group1_slew = !!((buf[0x0c] >> 4) & SLOW_SLEW);
3783 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA; /* not a bitflag */
3784 eeprom->group2_schmitt = !!(buf[0x0d] & IS_SCHMITT);
3785 eeprom->group2_slew = !!(buf[0x0d] & SLOW_SLEW);
3786 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA; /* not a bitflag */
3787 eeprom->group3_schmitt = !!((buf[0x0d] >> 4) & IS_SCHMITT);
3788 eeprom->group3_slew = !!((buf[0x0d] >> 4) & SLOW_SLEW);
3789 }
3790 else if (ftdi->type == TYPE_232H)
3791 {
3792 eeprom->channel_a_type = buf[0x00] & 0xf;
3793 eeprom->channel_a_driver = !!(buf[0x00] & DRIVER_VCPH);
3794 eeprom->clock_polarity = !!(buf[0x01] & FT1284_CLK_IDLE_STATE);
3795 eeprom->data_order = !!(buf[0x01] & FT1284_DATA_LSB);
3796 eeprom->flow_control = !!(buf[0x01] & FT1284_FLOW_CONTROL);
3797 eeprom->powersave = !!(buf[0x01] & POWER_SAVE_DISABLE_H);
3798 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA; /* not a bitflag */
3799 eeprom->group0_schmitt = !!(buf[0x0c] & IS_SCHMITT);
3800 eeprom->group0_slew = !!(buf[0x0c] & SLOW_SLEW);
3801 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA; /* not a bitflag */
3802 eeprom->group1_schmitt = !!(buf[0x0d] & IS_SCHMITT);
3803 eeprom->group1_slew = !!(buf[0x0d] & SLOW_SLEW);
3804
3805 for(i=0; i<5; i++)
3806 {
3807 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3808 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3809 }
3810 eeprom->chip = buf[0x1e];
3811 /*FIXME: Decipher more values*/
3812 }
3813 else if (ftdi->type == TYPE_230X)
3814 {
3815 for(i=0; i<4; i++)
3816 {
3817 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3818 }
3819 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA; /* not a bitflag */
3820 eeprom->group0_schmitt = !!(buf[0x0c] & IS_SCHMITT);
3821 eeprom->group0_slew = !!(buf[0x0c] & SLOW_SLEW);
3822 eeprom->group1_drive = (buf[0x0c] >> 4) & DRIVE_16MA; /* not a bitflag */
3823 eeprom->group1_schmitt = !!((buf[0x0c] >> 4) & IS_SCHMITT);
3824 eeprom->group1_slew = !!((buf[0x0c] >> 4) & SLOW_SLEW);
3825
3826 eeprom->invert = buf[0xb]; /* not a bitflag */
3827 }
3828
3829 if (verbose)
3830 {
3831 const char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3832 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3833 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3834 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3835
3836 if (eeprom->self_powered)
3837 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3838 else
3839 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3840 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3841 if (eeprom->manufacturer)
3842 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3843 if (eeprom->product)
3844 fprintf(stdout, "Product: %s\n",eeprom->product);
3845 if (eeprom->serial)
3846 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3847 fprintf(stdout, "Checksum : %04x\n", checksum);
3848 if (ftdi->type == TYPE_R) {
3849 fprintf(stdout, "Internal EEPROM\n");
3850 fprintf(stdout,"Oscillator: %s\n", eeprom->external_oscillator?"External":"Internal");
3851 }
3852 else if (eeprom->chip >= 0x46)
3853 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3854 if (eeprom->suspend_dbus7)
3855 fprintf(stdout, "Suspend on DBUS7\n");
3856 if (eeprom->suspend_pull_downs)
3857 fprintf(stdout, "Pull IO pins low during suspend\n");
3858 if(eeprom->powersave)
3859 {
3860 if(ftdi->type >= TYPE_232H)
3861 fprintf(stdout,"Enter low power state on ACBUS7\n");
3862 }
3863 if (eeprom->remote_wakeup)
3864 fprintf(stdout, "Enable Remote Wake Up\n");
3865 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3866 if (ftdi->type >= TYPE_2232C)
3867 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3868 channel_mode[eeprom->channel_a_type],
3869 (eeprom->channel_a_driver)?" VCP":"",
3870 (eeprom->high_current_a)?" High Current IO":"");
3871 if (ftdi->type == TYPE_232H)
3872 {
3873 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3874 (eeprom->clock_polarity)?"HIGH":"LOW",
3875 (eeprom->data_order)?"LSB":"MSB",
3876 (eeprom->flow_control)?"":"No ");
3877 }
3878 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3879 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3880 channel_mode[eeprom->channel_b_type],
3881 (eeprom->channel_b_driver)?" VCP":"",
3882 (eeprom->high_current_b)?" High Current IO":"");
3883 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3884 eeprom->use_usb_version)
3885 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3886
3887 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3888 {
3889 fprintf(stdout,"%s has %d mA drive%s%s\n",
3890 (ftdi->type == TYPE_2232H)?"AL":"A",
3891 (eeprom->group0_drive+1) *4,
3892 (eeprom->group0_schmitt)?" Schmitt Input":"",
3893 (eeprom->group0_slew)?" Slow Slew":"");
3894 fprintf(stdout,"%s has %d mA drive%s%s\n",
3895 (ftdi->type == TYPE_2232H)?"AH":"B",
3896 (eeprom->group1_drive+1) *4,
3897 (eeprom->group1_schmitt)?" Schmitt Input":"",
3898 (eeprom->group1_slew)?" Slow Slew":"");
3899 fprintf(stdout,"%s has %d mA drive%s%s\n",
3900 (ftdi->type == TYPE_2232H)?"BL":"C",
3901 (eeprom->group2_drive+1) *4,
3902 (eeprom->group2_schmitt)?" Schmitt Input":"",
3903 (eeprom->group2_slew)?" Slow Slew":"");
3904 fprintf(stdout,"%s has %d mA drive%s%s\n",
3905 (ftdi->type == TYPE_2232H)?"BH":"D",
3906 (eeprom->group3_drive+1) *4,
3907 (eeprom->group3_schmitt)?" Schmitt Input":"",
3908 (eeprom->group3_slew)?" Slow Slew":"");
3909 }
3910 else if (ftdi->type == TYPE_232H)
3911 {
3912 const char *cbush_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3913 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3914 "CLK30","CLK15","CLK7_5"
3915 };
3916 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3917 (eeprom->group0_drive+1) *4,
3918 (eeprom->group0_schmitt)?" Schmitt Input":"",
3919 (eeprom->group0_slew)?" Slow Slew":"");
3920 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3921 (eeprom->group1_drive+1) *4,
3922 (eeprom->group1_schmitt)?" Schmitt Input":"",
3923 (eeprom->group1_slew)?" Slow Slew":"");
3924 for (i=0; i<10; i++)
3925 {
3926 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3927 fprintf(stdout,"C%d Function: %s\n", i,
3928 cbush_mux[eeprom->cbus_function[i]]);
3929 }
3930 }
3931 else if (ftdi->type == TYPE_230X)
3932 {
3933 const char *cbusx_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3934 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3935 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3936 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3937 "BBRD#", "TIME_STAMP", "AWAKE#",
3938 };
3939 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3940 (eeprom->group0_drive+1) *4,
3941 (eeprom->group0_schmitt)?" Schmitt Input":"",
3942 (eeprom->group0_slew)?" Slow Slew":"");
3943 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3944 (eeprom->group1_drive+1) *4,
3945 (eeprom->group1_schmitt)?" Schmitt Input":"",
3946 (eeprom->group1_slew)?" Slow Slew":"");
3947 for (i=0; i<4; i++)
3948 {
3949 if (eeprom->cbus_function[i]<= CBUSX_AWAKE)
3950 fprintf(stdout,"CBUS%d Function: %s\n", i, cbusx_mux[eeprom->cbus_function[i]]);
3951 }
3952
3953 if (eeprom->invert)
3954 print_inverted_bits(eeprom->invert);
3955 }
3956
3957 if (ftdi->type == TYPE_R)
3958 {
3959 const char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3960 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3961 "IOMODE","BB_WR","BB_RD"
3962 };
3963 const char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3964
3965 if (eeprom->invert)
3966 print_inverted_bits(eeprom->invert);
3967
3968 for (i=0; i<5; i++)
3969 {
3970 if (eeprom->cbus_function[i]<=CBUS_BB_RD)
3971 fprintf(stdout,"C%d Function: %s\n", i,
3972 cbus_mux[eeprom->cbus_function[i]]);
3973 else
3974 {
3975 if (i < 4)
3976 /* Running MPROG show that C0..3 have fixed function Synchronous
3977 Bit Bang mode */
3978 fprintf(stdout,"C%d BB Function: %s\n", i,
3979 cbus_BB[i]);
3980 else
3981 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3982 }
3983 }
3984 }
3985 }
3986 return 0;
3987}
3988
3989/**
3990 Get a value from the decoded EEPROM structure
3991
3992 \param ftdi pointer to ftdi_context
3993 \param value_name Enum of the value to query
3994 \param value Pointer to store read value
3995
3996 \retval 0: all fine
3997 \retval -1: Value doesn't exist
3998*/
3999int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
4000{
4001 switch (value_name)
4002 {
4003 case VENDOR_ID:
4004 *value = ftdi->eeprom->vendor_id;
4005 break;
4006 case PRODUCT_ID:
4007 *value = ftdi->eeprom->product_id;
4008 break;
4009 case RELEASE_NUMBER:
4010 *value = ftdi->eeprom->release_number;
4011 break;
4012 case SELF_POWERED:
4013 *value = ftdi->eeprom->self_powered;
4014 break;
4015 case REMOTE_WAKEUP:
4016 *value = ftdi->eeprom->remote_wakeup;
4017 break;
4018 case IS_NOT_PNP:
4019 *value = ftdi->eeprom->is_not_pnp;
4020 break;
4021 case SUSPEND_DBUS7:
4022 *value = ftdi->eeprom->suspend_dbus7;
4023 break;
4024 case IN_IS_ISOCHRONOUS:
4025 *value = ftdi->eeprom->in_is_isochronous;
4026 break;
4027 case OUT_IS_ISOCHRONOUS:
4028 *value = ftdi->eeprom->out_is_isochronous;
4029 break;
4030 case SUSPEND_PULL_DOWNS:
4031 *value = ftdi->eeprom->suspend_pull_downs;
4032 break;
4033 case USE_SERIAL:
4034 *value = ftdi->eeprom->use_serial;
4035 break;
4036 case USB_VERSION:
4037 *value = ftdi->eeprom->usb_version;
4038 break;
4039 case USE_USB_VERSION:
4040 *value = ftdi->eeprom->use_usb_version;
4041 break;
4042 case MAX_POWER:
4043 *value = ftdi->eeprom->max_power;
4044 break;
4045 case CHANNEL_A_TYPE:
4046 *value = ftdi->eeprom->channel_a_type;
4047 break;
4048 case CHANNEL_B_TYPE:
4049 *value = ftdi->eeprom->channel_b_type;
4050 break;
4051 case CHANNEL_A_DRIVER:
4052 *value = ftdi->eeprom->channel_a_driver;
4053 break;
4054 case CHANNEL_B_DRIVER:
4055 *value = ftdi->eeprom->channel_b_driver;
4056 break;
4057 case CHANNEL_C_DRIVER:
4058 *value = ftdi->eeprom->channel_c_driver;
4059 break;
4060 case CHANNEL_D_DRIVER:
4061 *value = ftdi->eeprom->channel_d_driver;
4062 break;
4063 case CHANNEL_A_RS485:
4064 *value = ftdi->eeprom->channel_a_rs485enable;
4065 break;
4066 case CHANNEL_B_RS485:
4067 *value = ftdi->eeprom->channel_b_rs485enable;
4068 break;
4069 case CHANNEL_C_RS485:
4070 *value = ftdi->eeprom->channel_c_rs485enable;
4071 break;
4072 case CHANNEL_D_RS485:
4073 *value = ftdi->eeprom->channel_d_rs485enable;
4074 break;
4075 case CBUS_FUNCTION_0:
4076 *value = ftdi->eeprom->cbus_function[0];
4077 break;
4078 case CBUS_FUNCTION_1:
4079 *value = ftdi->eeprom->cbus_function[1];
4080 break;
4081 case CBUS_FUNCTION_2:
4082 *value = ftdi->eeprom->cbus_function[2];
4083 break;
4084 case CBUS_FUNCTION_3:
4085 *value = ftdi->eeprom->cbus_function[3];
4086 break;
4087 case CBUS_FUNCTION_4:
4088 *value = ftdi->eeprom->cbus_function[4];
4089 break;
4090 case CBUS_FUNCTION_5:
4091 *value = ftdi->eeprom->cbus_function[5];
4092 break;
4093 case CBUS_FUNCTION_6:
4094 *value = ftdi->eeprom->cbus_function[6];
4095 break;
4096 case CBUS_FUNCTION_7:
4097 *value = ftdi->eeprom->cbus_function[7];
4098 break;
4099 case CBUS_FUNCTION_8:
4100 *value = ftdi->eeprom->cbus_function[8];
4101 break;
4102 case CBUS_FUNCTION_9:
4103 *value = ftdi->eeprom->cbus_function[9];
4104 break;
4105 case HIGH_CURRENT:
4106 *value = ftdi->eeprom->high_current;
4107 break;
4108 case HIGH_CURRENT_A:
4109 *value = ftdi->eeprom->high_current_a;
4110 break;
4111 case HIGH_CURRENT_B:
4112 *value = ftdi->eeprom->high_current_b;
4113 break;
4114 case INVERT:
4115 *value = ftdi->eeprom->invert;
4116 break;
4117 case GROUP0_DRIVE:
4118 *value = ftdi->eeprom->group0_drive;
4119 break;
4120 case GROUP0_SCHMITT:
4121 *value = ftdi->eeprom->group0_schmitt;
4122 break;
4123 case GROUP0_SLEW:
4124 *value = ftdi->eeprom->group0_slew;
4125 break;
4126 case GROUP1_DRIVE:
4127 *value = ftdi->eeprom->group1_drive;
4128 break;
4129 case GROUP1_SCHMITT:
4130 *value = ftdi->eeprom->group1_schmitt;
4131 break;
4132 case GROUP1_SLEW:
4133 *value = ftdi->eeprom->group1_slew;
4134 break;
4135 case GROUP2_DRIVE:
4136 *value = ftdi->eeprom->group2_drive;
4137 break;
4138 case GROUP2_SCHMITT:
4139 *value = ftdi->eeprom->group2_schmitt;
4140 break;
4141 case GROUP2_SLEW:
4142 *value = ftdi->eeprom->group2_slew;
4143 break;
4144 case GROUP3_DRIVE:
4145 *value = ftdi->eeprom->group3_drive;
4146 break;
4147 case GROUP3_SCHMITT:
4148 *value = ftdi->eeprom->group3_schmitt;
4149 break;
4150 case GROUP3_SLEW:
4151 *value = ftdi->eeprom->group3_slew;
4152 break;
4153 case POWER_SAVE:
4154 *value = ftdi->eeprom->powersave;
4155 break;
4156 case CLOCK_POLARITY:
4157 *value = ftdi->eeprom->clock_polarity;
4158 break;
4159 case DATA_ORDER:
4160 *value = ftdi->eeprom->data_order;
4161 break;
4162 case FLOW_CONTROL:
4163 *value = ftdi->eeprom->flow_control;
4164 break;
4165 case CHIP_TYPE:
4166 *value = ftdi->eeprom->chip;
4167 break;
4168 case CHIP_SIZE:
4169 *value = ftdi->eeprom->size;
4170 break;
4171 case EXTERNAL_OSCILLATOR:
4172 *value = ftdi->eeprom->external_oscillator;
4173 break;
4174 default:
4175 ftdi_error_return(-1, "Request for unknown EEPROM value");
4176 }
4177 return 0;
4178}
4179
4180/**
4181 Set a value in the decoded EEPROM Structure
4182 No parameter checking is performed
4183
4184 \param ftdi pointer to ftdi_context
4185 \param value_name Enum of the value to set
4186 \param value to set
4187
4188 \retval 0: all fine
4189 \retval -1: Value doesn't exist
4190 \retval -2: Value not user settable
4191*/
4192int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
4193{
4194 switch (value_name)
4195 {
4196 case VENDOR_ID:
4197 ftdi->eeprom->vendor_id = value;
4198 break;
4199 case PRODUCT_ID:
4200 ftdi->eeprom->product_id = value;
4201 break;
4202 case RELEASE_NUMBER:
4203 ftdi->eeprom->release_number = value;
4204 break;
4205 case SELF_POWERED:
4206 ftdi->eeprom->self_powered = value;
4207 break;
4208 case REMOTE_WAKEUP:
4209 ftdi->eeprom->remote_wakeup = value;
4210 break;
4211 case IS_NOT_PNP:
4212 ftdi->eeprom->is_not_pnp = value;
4213 break;
4214 case SUSPEND_DBUS7:
4215 ftdi->eeprom->suspend_dbus7 = value;
4216 break;
4217 case IN_IS_ISOCHRONOUS:
4218 ftdi->eeprom->in_is_isochronous = value;
4219 break;
4220 case OUT_IS_ISOCHRONOUS:
4221 ftdi->eeprom->out_is_isochronous = value;
4222 break;
4223 case SUSPEND_PULL_DOWNS:
4224 ftdi->eeprom->suspend_pull_downs = value;
4225 break;
4226 case USE_SERIAL:
4227 ftdi->eeprom->use_serial = value;
4228 break;
4229 case USB_VERSION:
4230 ftdi->eeprom->usb_version = value;
4231 break;
4232 case USE_USB_VERSION:
4233 ftdi->eeprom->use_usb_version = value;
4234 break;
4235 case MAX_POWER:
4236 ftdi->eeprom->max_power = value;
4237 break;
4238 case CHANNEL_A_TYPE:
4239 ftdi->eeprom->channel_a_type = value;
4240 break;
4241 case CHANNEL_B_TYPE:
4242 ftdi->eeprom->channel_b_type = value;
4243 break;
4244 case CHANNEL_A_DRIVER:
4245 ftdi->eeprom->channel_a_driver = value;
4246 break;
4247 case CHANNEL_B_DRIVER:
4248 ftdi->eeprom->channel_b_driver = value;
4249 break;
4250 case CHANNEL_C_DRIVER:
4251 ftdi->eeprom->channel_c_driver = value;
4252 break;
4253 case CHANNEL_D_DRIVER:
4254 ftdi->eeprom->channel_d_driver = value;
4255 break;
4256 case CHANNEL_A_RS485:
4257 ftdi->eeprom->channel_a_rs485enable = value;
4258 break;
4259 case CHANNEL_B_RS485:
4260 ftdi->eeprom->channel_b_rs485enable = value;
4261 break;
4262 case CHANNEL_C_RS485:
4263 ftdi->eeprom->channel_c_rs485enable = value;
4264 break;
4265 case CHANNEL_D_RS485:
4266 ftdi->eeprom->channel_d_rs485enable = value;
4267 break;
4268 case CBUS_FUNCTION_0:
4269 ftdi->eeprom->cbus_function[0] = value;
4270 break;
4271 case CBUS_FUNCTION_1:
4272 ftdi->eeprom->cbus_function[1] = value;
4273 break;
4274 case CBUS_FUNCTION_2:
4275 ftdi->eeprom->cbus_function[2] = value;
4276 break;
4277 case CBUS_FUNCTION_3:
4278 ftdi->eeprom->cbus_function[3] = value;
4279 break;
4280 case CBUS_FUNCTION_4:
4281 ftdi->eeprom->cbus_function[4] = value;
4282 break;
4283 case CBUS_FUNCTION_5:
4284 ftdi->eeprom->cbus_function[5] = value;
4285 break;
4286 case CBUS_FUNCTION_6:
4287 ftdi->eeprom->cbus_function[6] = value;
4288 break;
4289 case CBUS_FUNCTION_7:
4290 ftdi->eeprom->cbus_function[7] = value;
4291 break;
4292 case CBUS_FUNCTION_8:
4293 ftdi->eeprom->cbus_function[8] = value;
4294 break;
4295 case CBUS_FUNCTION_9:
4296 ftdi->eeprom->cbus_function[9] = value;
4297 break;
4298 case HIGH_CURRENT:
4299 ftdi->eeprom->high_current = value;
4300 break;
4301 case HIGH_CURRENT_A:
4302 ftdi->eeprom->high_current_a = value;
4303 break;
4304 case HIGH_CURRENT_B:
4305 ftdi->eeprom->high_current_b = value;
4306 break;
4307 case INVERT:
4308 ftdi->eeprom->invert = value;
4309 break;
4310 case GROUP0_DRIVE:
4311 ftdi->eeprom->group0_drive = value;
4312 break;
4313 case GROUP0_SCHMITT:
4314 ftdi->eeprom->group0_schmitt = value;
4315 break;
4316 case GROUP0_SLEW:
4317 ftdi->eeprom->group0_slew = value;
4318 break;
4319 case GROUP1_DRIVE:
4320 ftdi->eeprom->group1_drive = value;
4321 break;
4322 case GROUP1_SCHMITT:
4323 ftdi->eeprom->group1_schmitt = value;
4324 break;
4325 case GROUP1_SLEW:
4326 ftdi->eeprom->group1_slew = value;
4327 break;
4328 case GROUP2_DRIVE:
4329 ftdi->eeprom->group2_drive = value;
4330 break;
4331 case GROUP2_SCHMITT:
4332 ftdi->eeprom->group2_schmitt = value;
4333 break;
4334 case GROUP2_SLEW:
4335 ftdi->eeprom->group2_slew = value;
4336 break;
4337 case GROUP3_DRIVE:
4338 ftdi->eeprom->group3_drive = value;
4339 break;
4340 case GROUP3_SCHMITT:
4341 ftdi->eeprom->group3_schmitt = value;
4342 break;
4343 case GROUP3_SLEW:
4344 ftdi->eeprom->group3_slew = value;
4345 break;
4346 case CHIP_TYPE:
4347 ftdi->eeprom->chip = value;
4348 break;
4349 case POWER_SAVE:
4350 ftdi->eeprom->powersave = value;
4351 break;
4352 case CLOCK_POLARITY:
4353 ftdi->eeprom->clock_polarity = value;
4354 break;
4355 case DATA_ORDER:
4356 ftdi->eeprom->data_order = value;
4357 break;
4358 case FLOW_CONTROL:
4359 ftdi->eeprom->flow_control = value;
4360 break;
4361 case CHIP_SIZE:
4362 ftdi_error_return(-2, "EEPROM Value can't be changed");
4363 break;
4364 case EXTERNAL_OSCILLATOR:
4365 ftdi->eeprom->external_oscillator = value;
4366 break;
4367 case USER_DATA_ADDR:
4368 ftdi->eeprom->user_data_addr = value;
4369 break;
4370
4371 default :
4372 ftdi_error_return(-1, "Request to unknown EEPROM value");
4373 }
4374 ftdi->eeprom->initialized_for_connected_device = 0;
4375 return 0;
4376}
4377
4378/** Get the read-only buffer to the binary EEPROM content
4379
4380 \param ftdi pointer to ftdi_context
4381 \param buf buffer to receive EEPROM content
4382 \param size Size of receiving buffer
4383
4384 \retval 0: All fine
4385 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
4386 \retval -2: Not enough room to store eeprom
4387*/
4388int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
4389{
4390 if (!ftdi || !(ftdi->eeprom))
4391 ftdi_error_return(-1, "No appropriate structure");
4392
4393 if (!buf || size < ftdi->eeprom->size)
4394 ftdi_error_return(-1, "Not enough room to store eeprom");
4395
4396 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4397 if (size > FTDI_MAX_EEPROM_SIZE)
4398 size = FTDI_MAX_EEPROM_SIZE;
4399
4400 memcpy(buf, ftdi->eeprom->buf, size);
4401
4402 return 0;
4403}
4404
4405/** Set the EEPROM content from the user-supplied prefilled buffer
4406
4407 \param ftdi pointer to ftdi_context
4408 \param buf buffer to read EEPROM content
4409 \param size Size of buffer
4410
4411 \retval 0: All fine
4412 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4413*/
4414int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
4415{
4416 if (!ftdi || !(ftdi->eeprom) || !buf)
4417 ftdi_error_return(-1, "No appropriate structure");
4418
4419 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4420 if (size > FTDI_MAX_EEPROM_SIZE)
4421 size = FTDI_MAX_EEPROM_SIZE;
4422
4423 memcpy(ftdi->eeprom->buf, buf, size);
4424
4425 return 0;
4426}
4427
4428/** Set the EEPROM user data content from the user-supplied prefilled buffer
4429
4430 \param ftdi pointer to ftdi_context
4431 \param buf buffer to read EEPROM user data content
4432 \param size Size of buffer
4433
4434 \retval 0: All fine
4435 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4436*/
4437int ftdi_set_eeprom_user_data(struct ftdi_context *ftdi, const char * buf, int size)
4438{
4439 if (!ftdi || !(ftdi->eeprom) || !buf)
4440 ftdi_error_return(-1, "No appropriate structure");
4441
4442 ftdi->eeprom->user_data_size = size;
4443 ftdi->eeprom->user_data = buf;
4444 return 0;
4445}
4446
4447/**
4448 Read eeprom location
4449
4450 \param ftdi pointer to ftdi_context
4451 \param eeprom_addr Address of eeprom location to be read
4452 \param eeprom_val Pointer to store read eeprom location
4453
4454 \retval 0: all fine
4455 \retval -1: read failed
4456 \retval -2: USB device unavailable
4457*/
4458int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4459{
4460 unsigned char buf[2];
4461
4462 if (ftdi == NULL || ftdi->usb_dev == NULL)
4463 ftdi_error_return(-2, "USB device unavailable");
4464
4465 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, buf, 2, ftdi->usb_read_timeout) != 2)
4466 ftdi_error_return(-1, "reading eeprom failed");
4467
4468 *eeprom_val = (0xff & buf[0]) | (buf[1] << 8);
4469
4470 return 0;
4471}
4472
4473/**
4474 Read eeprom
4475
4476 \param ftdi pointer to ftdi_context
4477
4478 \retval 0: all fine
4479 \retval -1: read failed
4480 \retval -2: USB device unavailable
4481*/
4482int ftdi_read_eeprom(struct ftdi_context *ftdi)
4483{
4484 int i;
4485 unsigned char *buf;
4486
4487 if (ftdi == NULL || ftdi->usb_dev == NULL)
4488 ftdi_error_return(-2, "USB device unavailable");
4489 buf = ftdi->eeprom->buf;
4490
4491 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4492 {
4493 if (libusb_control_transfer(
4494 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4495 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4496 ftdi_error_return(-1, "reading eeprom failed");
4497 }
4498
4499 if (ftdi->type == TYPE_R)
4500 ftdi->eeprom->size = 0x80;
4501 /* Guesses size of eeprom by comparing halves
4502 - will not work with blank eeprom */
4503 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4504 ftdi->eeprom->size = -1;
4505 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4506 ftdi->eeprom->size = 0x80;
4507 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4508 ftdi->eeprom->size = 0x40;
4509 else
4510 ftdi->eeprom->size = 0x100;
4511 return 0;
4512}
4513
4514/*
4515 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4516 Function is only used internally
4517 \internal
4518*/
4519static unsigned char ftdi_read_chipid_shift(unsigned char value)
4520{
4521 return ((value & 1) << 1) |
4522 ((value & 2) << 5) |
4523 ((value & 4) >> 2) |
4524 ((value & 8) << 4) |
4525 ((value & 16) >> 1) |
4526 ((value & 32) >> 1) |
4527 ((value & 64) >> 4) |
4528 ((value & 128) >> 2);
4529}
4530
4531/**
4532 Read the FTDIChip-ID from R-type devices
4533
4534 \param ftdi pointer to ftdi_context
4535 \param chipid Pointer to store FTDIChip-ID
4536
4537 \retval 0: all fine
4538 \retval -1: read failed
4539 \retval -2: USB device unavailable
4540*/
4541int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4542{
4543 unsigned int a = 0, b = 0;
4544
4545 if (ftdi == NULL || ftdi->usb_dev == NULL)
4546 ftdi_error_return(-2, "USB device unavailable");
4547
4548 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4549 {
4550 a = a << 8 | a >> 8;
4551 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4552 {
4553 b = b << 8 | b >> 8;
4554 a = (a << 16) | (b & 0xFFFF);
4555 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4556 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4557 *chipid = a ^ 0xa5f0f7d1;
4558 return 0;
4559 }
4560 }
4561
4562 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4563}
4564
4565/**
4566 Write eeprom location
4567
4568 \param ftdi pointer to ftdi_context
4569 \param eeprom_addr Address of eeprom location to be written
4570 \param eeprom_val Value to be written
4571
4572 \retval 0: all fine
4573 \retval -1: write failed
4574 \retval -2: USB device unavailable
4575 \retval -3: Invalid access to checksum protected area below 0x80
4576 \retval -4: Device can't access unprotected area
4577 \retval -5: Reading chip type failed
4578*/
4579int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4580 unsigned short eeprom_val)
4581{
4582 int chip_type_location;
4583 unsigned short chip_type;
4584
4585 if (ftdi == NULL || ftdi->usb_dev == NULL)
4586 ftdi_error_return(-2, "USB device unavailable");
4587
4588 if (eeprom_addr <0x80)
4589 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4590
4591
4592 switch (ftdi->type)
4593 {
4594 case TYPE_BM:
4595 case TYPE_2232C:
4596 chip_type_location = 0x14;
4597 break;
4598 case TYPE_2232H:
4599 case TYPE_4232H:
4600 chip_type_location = 0x18;
4601 break;
4602 case TYPE_232H:
4603 chip_type_location = 0x1e;
4604 break;
4605 default:
4606 ftdi_error_return(-4, "Device can't access unprotected area");
4607 }
4608
4609 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4610 ftdi_error_return(-5, "Reading failed");
4611 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4612 if ((chip_type & 0xff) != 0x66)
4613 {
4614 ftdi_error_return(-6, "EEPROM is not of 93x66");
4615 }
4616
4617 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4618 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4619 NULL, 0, ftdi->usb_write_timeout) != 0)
4620 ftdi_error_return(-1, "unable to write eeprom");
4621
4622 return 0;
4623}
4624
4625/**
4626 Write eeprom
4627
4628 \param ftdi pointer to ftdi_context
4629
4630 \retval 0: all fine
4631 \retval -1: read failed
4632 \retval -2: USB device unavailable
4633 \retval -3: EEPROM not initialized for the connected device;
4634*/
4635int ftdi_write_eeprom(struct ftdi_context *ftdi)
4636{
4637 unsigned short usb_val, status;
4638 int i, ret;
4639 unsigned char *eeprom;
4640
4641 if (ftdi == NULL || ftdi->usb_dev == NULL)
4642 ftdi_error_return(-2, "USB device unavailable");
4643
4644 if(ftdi->eeprom->initialized_for_connected_device == 0)
4645 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4646
4647 eeprom = ftdi->eeprom->buf;
4648
4649 /* These commands were traced while running MProg */
4650 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4651 return ret;
4652 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4653 return ret;
4654 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4655 return ret;
4656
4657 for (i = 0; i < ftdi->eeprom->size/2; i++)
4658 {
4659 /* Do not try to write to reserved area */
4660 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4661 {
4662 i = 0x50;
4663 }
4664 usb_val = eeprom[i*2];
4665 usb_val += eeprom[(i*2)+1] << 8;
4666 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4667 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4668 NULL, 0, ftdi->usb_write_timeout) < 0)
4669 ftdi_error_return(-1, "unable to write eeprom");
4670 }
4671
4672 return 0;
4673}
4674
4675/**
4676 Erase eeprom
4677
4678 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4679
4680 \param ftdi pointer to ftdi_context
4681
4682 \retval 0: all fine
4683 \retval -1: erase failed
4684 \retval -2: USB device unavailable
4685 \retval -3: Writing magic failed
4686 \retval -4: Read EEPROM failed
4687 \retval -5: Unexpected EEPROM value
4688*/
4689#define MAGIC 0x55aa
4690int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4691{
4692 unsigned short eeprom_value;
4693 if (ftdi == NULL || ftdi->usb_dev == NULL)
4694 ftdi_error_return(-2, "USB device unavailable");
4695
4696 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4697 {
4698 ftdi->eeprom->chip = 0;
4699 return 0;
4700 }
4701
4702 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4703 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4704 ftdi_error_return(-1, "unable to erase eeprom");
4705
4706
4707 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4708 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4709 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4710 Chip is 93x66 if magic is only read at word position 0xc0*/
4711 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4712 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4713 NULL, 0, ftdi->usb_write_timeout) != 0)
4714 ftdi_error_return(-3, "Writing magic failed");
4715 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4716 ftdi_error_return(-4, "Reading failed");
4717 if (eeprom_value == MAGIC)
4718 {
4719 ftdi->eeprom->chip = 0x46;
4720 }
4721 else
4722 {
4723 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4724 ftdi_error_return(-4, "Reading failed");
4725 if (eeprom_value == MAGIC)
4726 ftdi->eeprom->chip = 0x56;
4727 else
4728 {
4729 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4730 ftdi_error_return(-4, "Reading failed");
4731 if (eeprom_value == MAGIC)
4732 ftdi->eeprom->chip = 0x66;
4733 else
4734 {
4735 ftdi->eeprom->chip = -1;
4736 }
4737 }
4738 }
4739 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4740 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4741 ftdi_error_return(-1, "unable to erase eeprom");
4742 return 0;
4743}
4744
4745/**
4746 Get string representation for last error code
4747
4748 \param ftdi pointer to ftdi_context
4749
4750 \retval Pointer to error string
4751*/
4752const char *ftdi_get_error_string (struct ftdi_context *ftdi)
4753{
4754 if (ftdi == NULL)
4755 return "";
4756
4757 return ftdi->error_str;
4758}
4759
4760/* @} end of doxygen libftdi group */