Fix usb index in ftdi_convert_baudrate() for FT2232H/FT4232H chips
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2008 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <usb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35
36#include "ftdi.h"
37
38/* stuff needed for async write */
39#ifdef LIBFTDI_LINUX_ASYNC_MODE
40#include <sys/ioctl.h>
41#include <sys/time.h>
42#include <sys/select.h>
43#include <sys/types.h>
44#include <unistd.h>
45#include <linux/usbdevice_fs.h>
46#endif
47
48#define ftdi_error_return(code, str) do { \
49 ftdi->error_str = str; \
50 return code; \
51 } while(0);
52
53/**
54 Internal function to close usb device pointer.
55 Sets ftdi->usb_dev to NULL.
56 \internal
57
58 \param ftdi pointer to ftdi_context
59
60 \retval zero if all is fine, otherwise error code from usb_close()
61*/
62static int ftdi_usb_close_internal (struct ftdi_context *ftdi)
63{
64 int ret = 0;
65
66 if (ftdi->usb_dev)
67 {
68 ret = usb_close (ftdi->usb_dev);
69 ftdi->usb_dev = NULL;
70 }
71
72 return ret;
73}
74
75/**
76 Initializes a ftdi_context.
77
78 \param ftdi pointer to ftdi_context
79
80 \retval 0: all fine
81 \retval -1: couldn't allocate read buffer
82
83 \remark This should be called before all functions
84*/
85int ftdi_init(struct ftdi_context *ftdi)
86{
87 unsigned int i;
88
89 ftdi->usb_dev = NULL;
90 ftdi->usb_read_timeout = 5000;
91 ftdi->usb_write_timeout = 5000;
92
93 ftdi->type = TYPE_BM; /* chip type */
94 ftdi->baudrate = -1;
95 ftdi->bitbang_enabled = 0;
96
97 ftdi->readbuffer = NULL;
98 ftdi->readbuffer_offset = 0;
99 ftdi->readbuffer_remaining = 0;
100 ftdi->writebuffer_chunksize = 4096;
101
102 ftdi->interface = 0;
103 ftdi->index = 0;
104 ftdi->in_ep = 0x02;
105 ftdi->out_ep = 0x81;
106 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
107
108 ftdi->error_str = NULL;
109
110#ifdef LIBFTDI_LINUX_ASYNC_MODE
111 ftdi->async_usb_buffer_size=10;
112 if ((ftdi->async_usb_buffer=malloc(sizeof(struct usbdevfs_urb)*ftdi->async_usb_buffer_size)) == NULL)
113 ftdi_error_return(-1, "out of memory for async usb buffer");
114
115 /* initialize async usb buffer with unused-marker */
116 for (i=0; i < ftdi->async_usb_buffer_size; i++)
117 ((struct usbdevfs_urb*)ftdi->async_usb_buffer)[i].usercontext = FTDI_URB_USERCONTEXT_COOKIE;
118#else
119 ftdi->async_usb_buffer_size=0;
120 ftdi->async_usb_buffer = NULL;
121#endif
122
123 ftdi->eeprom_size = FTDI_DEFAULT_EEPROM_SIZE;
124
125 /* All fine. Now allocate the readbuffer */
126 return ftdi_read_data_set_chunksize(ftdi, 4096);
127}
128
129/**
130 Allocate and initialize a new ftdi_context
131
132 \return a pointer to a new ftdi_context, or NULL on failure
133*/
134struct ftdi_context *ftdi_new(void)
135{
136 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
137
138 if (ftdi == NULL)
139 {
140 return NULL;
141 }
142
143 if (ftdi_init(ftdi) != 0)
144 {
145 free(ftdi);
146 return NULL;
147 }
148
149 return ftdi;
150}
151
152/**
153 Open selected channels on a chip, otherwise use first channel.
154
155 \param ftdi pointer to ftdi_context
156 \param interface Interface to use for FT2232C/2232H/4232H chips.
157
158 \retval 0: all fine
159 \retval -1: unknown interface
160*/
161int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
162{
163 switch (interface)
164 {
165 case INTERFACE_ANY:
166 case INTERFACE_A:
167 /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */
168 break;
169 case INTERFACE_B:
170 ftdi->interface = 1;
171 ftdi->index = INTERFACE_B;
172 ftdi->in_ep = 0x04;
173 ftdi->out_ep = 0x83;
174 break;
175 case INTERFACE_C:
176 ftdi->interface = 2;
177 ftdi->index = INTERFACE_C;
178 ftdi->in_ep = 0x06;
179 ftdi->out_ep = 0x85;
180 break;
181 case INTERFACE_D:
182 ftdi->interface = 3;
183 ftdi->index = INTERFACE_D;
184 ftdi->in_ep = 0x08;
185 ftdi->out_ep = 0x87;
186 break;
187 default:
188 ftdi_error_return(-1, "Unknown interface");
189 }
190 return 0;
191}
192
193/**
194 Deinitializes a ftdi_context.
195
196 \param ftdi pointer to ftdi_context
197*/
198void ftdi_deinit(struct ftdi_context *ftdi)
199{
200 ftdi_usb_close_internal (ftdi);
201
202 if (ftdi->async_usb_buffer != NULL)
203 {
204 free(ftdi->async_usb_buffer);
205 ftdi->async_usb_buffer = NULL;
206 }
207
208 if (ftdi->readbuffer != NULL)
209 {
210 free(ftdi->readbuffer);
211 ftdi->readbuffer = NULL;
212 }
213}
214
215/**
216 Deinitialize and free an ftdi_context.
217
218 \param ftdi pointer to ftdi_context
219*/
220void ftdi_free(struct ftdi_context *ftdi)
221{
222 ftdi_deinit(ftdi);
223 free(ftdi);
224}
225
226/**
227 Use an already open libusb device.
228
229 \param ftdi pointer to ftdi_context
230 \param usb libusb usb_dev_handle to use
231*/
232void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
233{
234 ftdi->usb_dev = usb;
235}
236
237
238/**
239 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
240 needs to be deallocated by ftdi_list_free() after use.
241
242 \param ftdi pointer to ftdi_context
243 \param devlist Pointer where to store list of found devices
244 \param vendor Vendor ID to search for
245 \param product Product ID to search for
246
247 \retval >0: number of devices found
248 \retval -1: usb_find_busses() failed
249 \retval -2: usb_find_devices() failed
250 \retval -3: out of memory
251*/
252int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
253{
254 struct ftdi_device_list **curdev;
255 struct usb_bus *bus;
256 struct usb_device *dev;
257 int count = 0;
258
259 usb_init();
260 if (usb_find_busses() < 0)
261 ftdi_error_return(-1, "usb_find_busses() failed");
262 if (usb_find_devices() < 0)
263 ftdi_error_return(-2, "usb_find_devices() failed");
264
265 curdev = devlist;
266 *curdev = NULL;
267 for (bus = usb_get_busses(); bus; bus = bus->next)
268 {
269 for (dev = bus->devices; dev; dev = dev->next)
270 {
271 if (dev->descriptor.idVendor == vendor
272 && dev->descriptor.idProduct == product)
273 {
274 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
275 if (!*curdev)
276 ftdi_error_return(-3, "out of memory");
277
278 (*curdev)->next = NULL;
279 (*curdev)->dev = dev;
280
281 curdev = &(*curdev)->next;
282 count++;
283 }
284 }
285 }
286
287 return count;
288}
289
290/**
291 Frees a usb device list.
292
293 \param devlist USB device list created by ftdi_usb_find_all()
294*/
295void ftdi_list_free(struct ftdi_device_list **devlist)
296{
297 struct ftdi_device_list *curdev, *next;
298
299 for (curdev = *devlist; curdev != NULL;)
300 {
301 next = curdev->next;
302 free(curdev);
303 curdev = next;
304 }
305
306 *devlist = NULL;
307}
308
309/**
310 Frees a usb device list.
311
312 \param devlist USB device list created by ftdi_usb_find_all()
313*/
314void ftdi_list_free2(struct ftdi_device_list *devlist)
315{
316 ftdi_list_free(&devlist);
317}
318
319/**
320 Return device ID strings from the usb device.
321
322 The parameters manufacturer, description and serial may be NULL
323 or pointer to buffers to store the fetched strings.
324
325 \note Use this function only in combination with ftdi_usb_find_all()
326 as it closes the internal "usb_dev" after use.
327
328 \param ftdi pointer to ftdi_context
329 \param dev libusb usb_dev to use
330 \param manufacturer Store manufacturer string here if not NULL
331 \param mnf_len Buffer size of manufacturer string
332 \param description Store product description string here if not NULL
333 \param desc_len Buffer size of product description string
334 \param serial Store serial string here if not NULL
335 \param serial_len Buffer size of serial string
336
337 \retval 0: all fine
338 \retval -1: wrong arguments
339 \retval -4: unable to open device
340 \retval -7: get product manufacturer failed
341 \retval -8: get product description failed
342 \retval -9: get serial number failed
343 \retval -10: unable to close device
344*/
345int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct usb_device * dev,
346 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
347{
348 if ((ftdi==NULL) || (dev==NULL))
349 return -1;
350
351 if (!(ftdi->usb_dev = usb_open(dev)))
352 ftdi_error_return(-4, usb_strerror());
353
354 if (manufacturer != NULL)
355 {
356 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iManufacturer, manufacturer, mnf_len) <= 0)
357 {
358 ftdi_usb_close_internal (ftdi);
359 ftdi_error_return(-7, usb_strerror());
360 }
361 }
362
363 if (description != NULL)
364 {
365 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, description, desc_len) <= 0)
366 {
367 ftdi_usb_close_internal (ftdi);
368 ftdi_error_return(-8, usb_strerror());
369 }
370 }
371
372 if (serial != NULL)
373 {
374 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, serial, serial_len) <= 0)
375 {
376 ftdi_usb_close_internal (ftdi);
377 ftdi_error_return(-9, usb_strerror());
378 }
379 }
380
381 if (ftdi_usb_close_internal (ftdi) != 0)
382 ftdi_error_return(-10, usb_strerror());
383
384 return 0;
385}
386
387/**
388 Opens a ftdi device given by a usb_device.
389
390 \param ftdi pointer to ftdi_context
391 \param dev libusb usb_dev to use
392
393 \retval 0: all fine
394 \retval -3: unable to config device
395 \retval -4: unable to open device
396 \retval -5: unable to claim device
397 \retval -6: reset failed
398 \retval -7: set baudrate failed
399*/
400int ftdi_usb_open_dev(struct ftdi_context *ftdi, struct usb_device *dev)
401{
402 int detach_errno = 0;
403 if (!(ftdi->usb_dev = usb_open(dev)))
404 ftdi_error_return(-4, "usb_open() failed");
405
406#ifdef LIBUSB_HAS_GET_DRIVER_NP
407 // Try to detach ftdi_sio kernel module.
408 // Returns ENODATA if driver is not loaded.
409 //
410 // The return code is kept in a separate variable and only parsed
411 // if usb_set_configuration() or usb_claim_interface() fails as the
412 // detach operation might be denied and everything still works fine.
413 // Likely scenario is a static ftdi_sio kernel module.
414 if (usb_detach_kernel_driver_np(ftdi->usb_dev, ftdi->interface) != 0 && errno != ENODATA)
415 detach_errno = errno;
416#endif
417
418#ifdef __WIN32__
419 // set configuration (needed especially for windows)
420 // tolerate EBUSY: one device with one configuration, but two interfaces
421 // and libftdi sessions to both interfaces (e.g. FT2232)
422 if (dev->descriptor.bNumConfigurations > 0 &&
423 usb_set_configuration(ftdi->usb_dev, dev->config[0].bConfigurationValue) &&
424 errno != EBUSY)
425 {
426 ftdi_usb_close_internal (ftdi);
427 if (detach_errno == EPERM)
428 {
429 ftdi_error_return(-8, "inappropriate permissions on device!");
430 }
431 else
432 {
433 ftdi_error_return(-3, "unable to set usb configuration. Make sure ftdi_sio is unloaded!");
434 }
435 }
436#endif
437
438 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0)
439 {
440 ftdi_usb_close_internal (ftdi);
441 if (detach_errno == EPERM)
442 {
443 ftdi_error_return(-8, "inappropriate permissions on device!");
444 }
445 else
446 {
447 ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!");
448 }
449 }
450
451 if (ftdi_usb_reset (ftdi) != 0)
452 {
453 ftdi_usb_close_internal (ftdi);
454 ftdi_error_return(-6, "ftdi_usb_reset failed");
455 }
456
457 // Try to guess chip type
458 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
459 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
460 && dev->descriptor.iSerialNumber == 0))
461 ftdi->type = TYPE_BM;
462 else if (dev->descriptor.bcdDevice == 0x200)
463 ftdi->type = TYPE_AM;
464 else if (dev->descriptor.bcdDevice == 0x500)
465 ftdi->type = TYPE_2232C;
466 else if (dev->descriptor.bcdDevice == 0x600)
467 ftdi->type = TYPE_R;
468 else if (dev->descriptor.bcdDevice == 0x700)
469 ftdi->type = TYPE_2232H;
470 else if (dev->descriptor.bcdDevice == 0x800)
471 ftdi->type = TYPE_4232H;
472
473 // Set default interface on dual/quad type chips
474 switch(ftdi->type)
475 {
476 case TYPE_2232C:
477 case TYPE_2232H:
478 case TYPE_4232H:
479 if (!ftdi->index)
480 ftdi->index = INTERFACE_A;
481 break;
482 default:
483 break;
484 }
485
486 if (ftdi_set_baudrate (ftdi, 9600) != 0)
487 {
488 ftdi_usb_close_internal (ftdi);
489 ftdi_error_return(-7, "set baudrate failed");
490 }
491
492 ftdi_error_return(0, "all fine");
493}
494
495/**
496 Opens the first device with a given vendor and product ids.
497
498 \param ftdi pointer to ftdi_context
499 \param vendor Vendor ID
500 \param product Product ID
501
502 \retval same as ftdi_usb_open_desc()
503*/
504int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
505{
506 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
507}
508
509/**
510 Opens the first device with a given, vendor id, product id,
511 description and serial.
512
513 \param ftdi pointer to ftdi_context
514 \param vendor Vendor ID
515 \param product Product ID
516 \param description Description to search for. Use NULL if not needed.
517 \param serial Serial to search for. Use NULL if not needed.
518
519 \retval 0: all fine
520 \retval -1: usb_find_busses() failed
521 \retval -2: usb_find_devices() failed
522 \retval -3: usb device not found
523 \retval -4: unable to open device
524 \retval -5: unable to claim device
525 \retval -6: reset failed
526 \retval -7: set baudrate failed
527 \retval -8: get product description failed
528 \retval -9: get serial number failed
529 \retval -10: unable to close device
530*/
531int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
532 const char* description, const char* serial)
533{
534 struct usb_bus *bus;
535 struct usb_device *dev;
536 char string[256];
537
538 usb_init();
539
540 if (usb_find_busses() < 0)
541 ftdi_error_return(-1, "usb_find_busses() failed");
542 if (usb_find_devices() < 0)
543 ftdi_error_return(-2, "usb_find_devices() failed");
544
545 for (bus = usb_get_busses(); bus; bus = bus->next)
546 {
547 for (dev = bus->devices; dev; dev = dev->next)
548 {
549 if (dev->descriptor.idVendor == vendor
550 && dev->descriptor.idProduct == product)
551 {
552 if (!(ftdi->usb_dev = usb_open(dev)))
553 ftdi_error_return(-4, "usb_open() failed");
554
555 if (description != NULL)
556 {
557 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0)
558 {
559 ftdi_usb_close_internal (ftdi);
560 ftdi_error_return(-8, "unable to fetch product description");
561 }
562 if (strncmp(string, description, sizeof(string)) != 0)
563 {
564 if (ftdi_usb_close_internal (ftdi) != 0)
565 ftdi_error_return(-10, "unable to close device");
566 continue;
567 }
568 }
569 if (serial != NULL)
570 {
571 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0)
572 {
573 ftdi_usb_close_internal (ftdi);
574 ftdi_error_return(-9, "unable to fetch serial number");
575 }
576 if (strncmp(string, serial, sizeof(string)) != 0)
577 {
578 if (ftdi_usb_close_internal (ftdi) != 0)
579 ftdi_error_return(-10, "unable to close device");
580 continue;
581 }
582 }
583
584 if (ftdi_usb_close_internal (ftdi) != 0)
585 ftdi_error_return(-10, "unable to close device");
586
587 return ftdi_usb_open_dev(ftdi, dev);
588 }
589 }
590 }
591
592 // device not found
593 ftdi_error_return(-3, "device not found");
594}
595
596/**
597 Resets the ftdi device.
598
599 \param ftdi pointer to ftdi_context
600
601 \retval 0: all fine
602 \retval -1: FTDI reset failed
603*/
604int ftdi_usb_reset(struct ftdi_context *ftdi)
605{
606 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
607 SIO_RESET_REQUEST, SIO_RESET_SIO,
608 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
609 ftdi_error_return(-1,"FTDI reset failed");
610
611 // Invalidate data in the readbuffer
612 ftdi->readbuffer_offset = 0;
613 ftdi->readbuffer_remaining = 0;
614
615 return 0;
616}
617
618/**
619 Clears the read buffer on the chip and the internal read buffer.
620
621 \param ftdi pointer to ftdi_context
622
623 \retval 0: all fine
624 \retval -1: read buffer purge failed
625*/
626int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
627{
628 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
629 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
630 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
631 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
632
633 // Invalidate data in the readbuffer
634 ftdi->readbuffer_offset = 0;
635 ftdi->readbuffer_remaining = 0;
636
637 return 0;
638}
639
640/**
641 Clears the write buffer on the chip.
642
643 \param ftdi pointer to ftdi_context
644
645 \retval 0: all fine
646 \retval -1: write buffer purge failed
647*/
648int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
649{
650 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
651 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
652 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
653 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
654
655 return 0;
656}
657
658/**
659 Clears the buffers on the chip and the internal read buffer.
660
661 \param ftdi pointer to ftdi_context
662
663 \retval 0: all fine
664 \retval -1: read buffer purge failed
665 \retval -2: write buffer purge failed
666*/
667int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
668{
669 int result;
670
671 result = ftdi_usb_purge_rx_buffer(ftdi);
672 if (result < 0)
673 return -1;
674
675 result = ftdi_usb_purge_tx_buffer(ftdi);
676 if (result < 0)
677 return -2;
678
679 return 0;
680}
681
682
683
684/**
685 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
686
687 \param ftdi pointer to ftdi_context
688
689 \retval 0: all fine
690 \retval -1: usb_release failed
691 \retval -2: usb_close failed
692*/
693int ftdi_usb_close(struct ftdi_context *ftdi)
694{
695 int rtn = 0;
696
697#ifdef LIBFTDI_LINUX_ASYNC_MODE
698 /* try to release some kernel resources */
699 ftdi_async_complete(ftdi,1);
700#endif
701
702 if (ftdi->usb_dev != NULL)
703 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
704 rtn = -1;
705
706 if (ftdi_usb_close_internal (ftdi) != 0)
707 rtn = -2;
708
709 return rtn;
710}
711
712/*
713 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
714 Function is only used internally
715 \internal
716*/
717static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
718 unsigned short *value, unsigned short *index)
719{
720 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
721 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
722 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
723 int divisor, best_divisor, best_baud, best_baud_diff;
724 unsigned long encoded_divisor;
725 int i;
726
727 if (baudrate <= 0)
728 {
729 // Return error
730 return -1;
731 }
732
733 divisor = 24000000 / baudrate;
734
735 if (ftdi->type == TYPE_AM)
736 {
737 // Round down to supported fraction (AM only)
738 divisor -= am_adjust_dn[divisor & 7];
739 }
740
741 // Try this divisor and the one above it (because division rounds down)
742 best_divisor = 0;
743 best_baud = 0;
744 best_baud_diff = 0;
745 for (i = 0; i < 2; i++)
746 {
747 int try_divisor = divisor + i;
748 int baud_estimate;
749 int baud_diff;
750
751 // Round up to supported divisor value
752 if (try_divisor <= 8)
753 {
754 // Round up to minimum supported divisor
755 try_divisor = 8;
756 }
757 else if (ftdi->type != TYPE_AM && try_divisor < 12)
758 {
759 // BM doesn't support divisors 9 through 11 inclusive
760 try_divisor = 12;
761 }
762 else if (divisor < 16)
763 {
764 // AM doesn't support divisors 9 through 15 inclusive
765 try_divisor = 16;
766 }
767 else
768 {
769 if (ftdi->type == TYPE_AM)
770 {
771 // Round up to supported fraction (AM only)
772 try_divisor += am_adjust_up[try_divisor & 7];
773 if (try_divisor > 0x1FFF8)
774 {
775 // Round down to maximum supported divisor value (for AM)
776 try_divisor = 0x1FFF8;
777 }
778 }
779 else
780 {
781 if (try_divisor > 0x1FFFF)
782 {
783 // Round down to maximum supported divisor value (for BM)
784 try_divisor = 0x1FFFF;
785 }
786 }
787 }
788 // Get estimated baud rate (to nearest integer)
789 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
790 // Get absolute difference from requested baud rate
791 if (baud_estimate < baudrate)
792 {
793 baud_diff = baudrate - baud_estimate;
794 }
795 else
796 {
797 baud_diff = baud_estimate - baudrate;
798 }
799 if (i == 0 || baud_diff < best_baud_diff)
800 {
801 // Closest to requested baud rate so far
802 best_divisor = try_divisor;
803 best_baud = baud_estimate;
804 best_baud_diff = baud_diff;
805 if (baud_diff == 0)
806 {
807 // Spot on! No point trying
808 break;
809 }
810 }
811 }
812 // Encode the best divisor value
813 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
814 // Deal with special cases for encoded value
815 if (encoded_divisor == 1)
816 {
817 encoded_divisor = 0; // 3000000 baud
818 }
819 else if (encoded_divisor == 0x4001)
820 {
821 encoded_divisor = 1; // 2000000 baud (BM only)
822 }
823 // Split into "value" and "index" values
824 *value = (unsigned short)(encoded_divisor & 0xFFFF);
825 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
826 {
827 *index = (unsigned short)(encoded_divisor >> 8);
828 *index &= 0xFF00;
829 *index |= ftdi->index;
830 }
831 else
832 *index = (unsigned short)(encoded_divisor >> 16);
833
834 // Return the nearest baud rate
835 return best_baud;
836}
837
838/**
839 Sets the chip baud rate
840
841 \param ftdi pointer to ftdi_context
842 \param baudrate baud rate to set
843
844 \retval 0: all fine
845 \retval -1: invalid baudrate
846 \retval -2: setting baudrate failed
847*/
848int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
849{
850 unsigned short value, index;
851 int actual_baudrate;
852
853 if (ftdi->bitbang_enabled)
854 {
855 baudrate = baudrate*4;
856 }
857
858 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
859 if (actual_baudrate <= 0)
860 ftdi_error_return (-1, "Silly baudrate <= 0.");
861
862 // Check within tolerance (about 5%)
863 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
864 || ((actual_baudrate < baudrate)
865 ? (actual_baudrate * 21 < baudrate * 20)
866 : (baudrate * 21 < actual_baudrate * 20)))
867 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
868
869 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
870 SIO_SET_BAUDRATE_REQUEST, value,
871 index, NULL, 0, ftdi->usb_write_timeout) != 0)
872 ftdi_error_return (-2, "Setting new baudrate failed");
873
874 ftdi->baudrate = baudrate;
875 return 0;
876}
877
878/**
879 Set (RS232) line characteristics.
880 The break type can only be set via ftdi_set_line_property2()
881 and defaults to "off".
882
883 \param ftdi pointer to ftdi_context
884 \param bits Number of bits
885 \param sbit Number of stop bits
886 \param parity Parity mode
887
888 \retval 0: all fine
889 \retval -1: Setting line property failed
890*/
891int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
892 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
893{
894 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
895}
896
897/**
898 Set (RS232) line characteristics
899
900 \param ftdi pointer to ftdi_context
901 \param bits Number of bits
902 \param sbit Number of stop bits
903 \param parity Parity mode
904 \param break_type Break type
905
906 \retval 0: all fine
907 \retval -1: Setting line property failed
908*/
909int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
910 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
911 enum ftdi_break_type break_type)
912{
913 unsigned short value = bits;
914
915 switch (parity)
916 {
917 case NONE:
918 value |= (0x00 << 8);
919 break;
920 case ODD:
921 value |= (0x01 << 8);
922 break;
923 case EVEN:
924 value |= (0x02 << 8);
925 break;
926 case MARK:
927 value |= (0x03 << 8);
928 break;
929 case SPACE:
930 value |= (0x04 << 8);
931 break;
932 }
933
934 switch (sbit)
935 {
936 case STOP_BIT_1:
937 value |= (0x00 << 11);
938 break;
939 case STOP_BIT_15:
940 value |= (0x01 << 11);
941 break;
942 case STOP_BIT_2:
943 value |= (0x02 << 11);
944 break;
945 }
946
947 switch (break_type)
948 {
949 case BREAK_OFF:
950 value |= (0x00 << 14);
951 break;
952 case BREAK_ON:
953 value |= (0x01 << 14);
954 break;
955 }
956
957 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
958 SIO_SET_DATA_REQUEST, value,
959 ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
960 ftdi_error_return (-1, "Setting new line property failed");
961
962 return 0;
963}
964
965/**
966 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
967
968 \param ftdi pointer to ftdi_context
969 \param buf Buffer with the data
970 \param size Size of the buffer
971
972 \retval <0: error code from usb_bulk_write()
973 \retval >0: number of bytes written
974*/
975int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
976{
977 int ret;
978 int offset = 0;
979 int total_written = 0;
980
981 while (offset < size)
982 {
983 int write_size = ftdi->writebuffer_chunksize;
984
985 if (offset+write_size > size)
986 write_size = size-offset;
987
988 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
989 if (ret < 0)
990 ftdi_error_return(ret, "usb bulk write failed");
991
992 total_written += ret;
993 offset += write_size;
994 }
995
996 return total_written;
997}
998
999#ifdef LIBFTDI_LINUX_ASYNC_MODE
1000#ifdef USB_CLASS_PTP
1001#error LIBFTDI_LINUX_ASYNC_MODE is not compatible with libusb-compat-0.1!
1002#endif
1003/* this is strongly dependent on libusb using the same struct layout. If libusb
1004 changes in some later version this may break horribly (this is for libusb 0.1.12) */
1005struct usb_dev_handle
1006{
1007 int fd;
1008 // some other stuff coming here we don't need
1009};
1010
1011/**
1012 Check for pending async urbs
1013 \internal
1014*/
1015static int _usb_get_async_urbs_pending(struct ftdi_context *ftdi)
1016{
1017 struct usbdevfs_urb *urb;
1018 int pending=0;
1019 unsigned int i;
1020
1021 for (i=0; i < ftdi->async_usb_buffer_size; i++)
1022 {
1023 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
1024 if (urb->usercontext != FTDI_URB_USERCONTEXT_COOKIE)
1025 pending++;
1026 }
1027
1028 return pending;
1029}
1030
1031/**
1032 Wait until one or more async URBs are completed by the kernel and mark their
1033 positions in the async-buffer as unused
1034
1035 \param ftdi pointer to ftdi_context
1036 \param wait_for_more if != 0 wait for more than one write to complete
1037 \param timeout_msec max milliseconds to wait
1038
1039 \internal
1040*/
1041static void _usb_async_cleanup(struct ftdi_context *ftdi, int wait_for_more, int timeout_msec)
1042{
1043 struct timeval tv;
1044 struct usbdevfs_urb *urb=NULL;
1045 int ret;
1046 fd_set writefds;
1047 int keep_going=0;
1048
1049 FD_ZERO(&writefds);
1050 FD_SET(ftdi->usb_dev->fd, &writefds);
1051
1052 /* init timeout only once, select writes time left after call */
1053 tv.tv_sec = timeout_msec / 1000;
1054 tv.tv_usec = (timeout_msec % 1000) * 1000;
1055
1056 do
1057 {
1058 while (_usb_get_async_urbs_pending(ftdi)
1059 && (ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_REAPURBNDELAY, &urb)) == -1
1060 && errno == EAGAIN)
1061 {
1062 if (keep_going && !wait_for_more)
1063 {
1064 /* don't wait if repeating only for keep_going */
1065 keep_going=0;
1066 break;
1067 }
1068
1069 /* wait for timeout msec or something written ready */
1070 select(ftdi->usb_dev->fd+1, NULL, &writefds, NULL, &tv);
1071 }
1072
1073 if (ret == 0 && urb != NULL)
1074 {
1075 /* got a free urb, mark it */
1076 urb->usercontext = FTDI_URB_USERCONTEXT_COOKIE;
1077
1078 /* try to get more urbs that are ready now, but don't wait anymore */
1079 urb=NULL;
1080 keep_going=1;
1081 }
1082 else
1083 {
1084 /* no more urbs waiting */
1085 keep_going=0;
1086 }
1087 }
1088 while (keep_going);
1089}
1090
1091/**
1092 Wait until one or more async URBs are completed by the kernel and mark their
1093 positions in the async-buffer as unused.
1094
1095 \param ftdi pointer to ftdi_context
1096 \param wait_for_more if != 0 wait for more than one write to complete (until write timeout)
1097*/
1098void ftdi_async_complete(struct ftdi_context *ftdi, int wait_for_more)
1099{
1100 _usb_async_cleanup(ftdi,wait_for_more,ftdi->usb_write_timeout);
1101}
1102
1103/**
1104 Stupid libusb does not offer async writes nor does it allow
1105 access to its fd - so we need some hacks here.
1106 \internal
1107*/
1108static int _usb_bulk_write_async(struct ftdi_context *ftdi, int ep, char *bytes, int size)
1109{
1110 struct usbdevfs_urb *urb;
1111 int bytesdone = 0, requested;
1112 int ret, cleanup_count;
1113 unsigned int i;
1114
1115 do
1116 {
1117 /* find a free urb buffer we can use */
1118 urb=NULL;
1119 for (cleanup_count=0; urb==NULL && cleanup_count <= 1; cleanup_count++)
1120 {
1121 if (i==ftdi->async_usb_buffer_size)
1122 {
1123 /* wait until some buffers are free */
1124 _usb_async_cleanup(ftdi,0,ftdi->usb_write_timeout);
1125 }
1126
1127 for (i=0; i < ftdi->async_usb_buffer_size; i++)
1128 {
1129 urb=&((struct usbdevfs_urb *)(ftdi->async_usb_buffer))[i];
1130 if (urb->usercontext == FTDI_URB_USERCONTEXT_COOKIE)
1131 break; /* found a free urb position */
1132 urb=NULL;
1133 }
1134 }
1135
1136 /* no free urb position found */
1137 if (urb==NULL)
1138 return -1;
1139
1140 requested = size - bytesdone;
1141 if (requested > 4096)
1142 requested = 4096;
1143
1144 memset(urb,0,sizeof(urb));
1145
1146 urb->type = USBDEVFS_URB_TYPE_BULK;
1147 urb->endpoint = ep;
1148 urb->flags = 0;
1149 urb->buffer = bytes + bytesdone;
1150 urb->buffer_length = requested;
1151 urb->signr = 0;
1152 urb->actual_length = 0;
1153 urb->number_of_packets = 0;
1154 urb->usercontext = 0;
1155
1156 do
1157 {
1158 ret = ioctl(ftdi->usb_dev->fd, USBDEVFS_SUBMITURB, urb);
1159 }
1160 while (ret < 0 && errno == EINTR);
1161 if (ret < 0)
1162 return ret; /* the caller can read errno to get more info */
1163
1164 bytesdone += requested;
1165 }
1166 while (bytesdone < size);
1167 return bytesdone;
1168}
1169
1170/**
1171 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip.
1172 Does not wait for completion of the transfer nor does it make sure that
1173 the transfer was successful.
1174
1175 This function could be extended to use signals and callbacks to inform the
1176 caller of completion or error - but this is not done yet, volunteers welcome.
1177
1178 Works around libusb and directly accesses functions only available on Linux.
1179 Only available if compiled with --with-async-mode.
1180
1181 \param ftdi pointer to ftdi_context
1182 \param buf Buffer with the data
1183 \param size Size of the buffer
1184
1185 \retval <0: error code from usb_bulk_write()
1186 \retval >0: number of bytes written
1187*/
1188int ftdi_write_data_async(struct ftdi_context *ftdi, unsigned char *buf, int size)
1189{
1190 int ret;
1191 int offset = 0;
1192 int total_written = 0;
1193
1194 while (offset < size)
1195 {
1196 int write_size = ftdi->writebuffer_chunksize;
1197
1198 if (offset+write_size > size)
1199 write_size = size-offset;
1200
1201 ret = _usb_bulk_write_async(ftdi, ftdi->in_ep, buf+offset, write_size);
1202 if (ret < 0)
1203 ftdi_error_return(ret, "usb bulk write async failed");
1204
1205 total_written += ret;
1206 offset += write_size;
1207 }
1208
1209 return total_written;
1210}
1211#endif // LIBFTDI_LINUX_ASYNC_MODE
1212
1213/**
1214 Configure write buffer chunk size.
1215 Default is 4096.
1216
1217 \param ftdi pointer to ftdi_context
1218 \param chunksize Chunk size
1219
1220 \retval 0: all fine
1221*/
1222int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1223{
1224 ftdi->writebuffer_chunksize = chunksize;
1225 return 0;
1226}
1227
1228/**
1229 Get write buffer chunk size.
1230
1231 \param ftdi pointer to ftdi_context
1232 \param chunksize Pointer to store chunk size in
1233
1234 \retval 0: all fine
1235*/
1236int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1237{
1238 *chunksize = ftdi->writebuffer_chunksize;
1239 return 0;
1240}
1241
1242/**
1243 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1244
1245 Automatically strips the two modem status bytes transfered during every read.
1246
1247 \param ftdi pointer to ftdi_context
1248 \param buf Buffer to store data in
1249 \param size Size of the buffer
1250
1251 \retval <0: error code from usb_bulk_read()
1252 \retval 0: no data was available
1253 \retval >0: number of bytes read
1254
1255 \remark This function is not useful in bitbang mode.
1256 Use ftdi_read_pins() to get the current state of the pins.
1257*/
1258int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1259{
1260 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
1261 int packet_size;
1262
1263 // New hi-speed devices from FTDI use a packet size of 512 bytes
1264 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1265 packet_size = 512;
1266 else
1267 packet_size = 64;
1268
1269 // everything we want is still in the readbuffer?
1270 if (size <= ftdi->readbuffer_remaining)
1271 {
1272 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1273
1274 // Fix offsets
1275 ftdi->readbuffer_remaining -= size;
1276 ftdi->readbuffer_offset += size;
1277
1278 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1279
1280 return size;
1281 }
1282 // something still in the readbuffer, but not enough to satisfy 'size'?
1283 if (ftdi->readbuffer_remaining != 0)
1284 {
1285 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1286
1287 // Fix offset
1288 offset += ftdi->readbuffer_remaining;
1289 }
1290 // do the actual USB read
1291 while (offset < size && ret > 0)
1292 {
1293 ftdi->readbuffer_remaining = 0;
1294 ftdi->readbuffer_offset = 0;
1295 /* returns how much received */
1296 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
1297 if (ret < 0)
1298 ftdi_error_return(ret, "usb bulk read failed");
1299
1300 if (ret > 2)
1301 {
1302 // skip FTDI status bytes.
1303 // Maybe stored in the future to enable modem use
1304 num_of_chunks = ret / packet_size;
1305 chunk_remains = ret % packet_size;
1306 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1307
1308 ftdi->readbuffer_offset += 2;
1309 ret -= 2;
1310
1311 if (ret > packet_size - 2)
1312 {
1313 for (i = 1; i < num_of_chunks; i++)
1314 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1315 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1316 packet_size - 2);
1317 if (chunk_remains > 2)
1318 {
1319 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1320 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1321 chunk_remains-2);
1322 ret -= 2*num_of_chunks;
1323 }
1324 else
1325 ret -= 2*(num_of_chunks-1)+chunk_remains;
1326 }
1327 }
1328 else if (ret <= 2)
1329 {
1330 // no more data to read?
1331 return offset;
1332 }
1333 if (ret > 0)
1334 {
1335 // data still fits in buf?
1336 if (offset+ret <= size)
1337 {
1338 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
1339 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1340 offset += ret;
1341
1342 /* Did we read exactly the right amount of bytes? */
1343 if (offset == size)
1344 //printf("read_data exact rem %d offset %d\n",
1345 //ftdi->readbuffer_remaining, offset);
1346 return offset;
1347 }
1348 else
1349 {
1350 // only copy part of the data or size <= readbuffer_chunksize
1351 int part_size = size-offset;
1352 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1353
1354 ftdi->readbuffer_offset += part_size;
1355 ftdi->readbuffer_remaining = ret-part_size;
1356 offset += part_size;
1357
1358 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
1359 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
1360
1361 return offset;
1362 }
1363 }
1364 }
1365 // never reached
1366 return -127;
1367}
1368
1369/**
1370 Configure read buffer chunk size.
1371 Default is 4096.
1372
1373 Automatically reallocates the buffer.
1374
1375 \param ftdi pointer to ftdi_context
1376 \param chunksize Chunk size
1377
1378 \retval 0: all fine
1379*/
1380int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1381{
1382 unsigned char *new_buf;
1383
1384 // Invalidate all remaining data
1385 ftdi->readbuffer_offset = 0;
1386 ftdi->readbuffer_remaining = 0;
1387
1388 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1389 ftdi_error_return(-1, "out of memory for readbuffer");
1390
1391 ftdi->readbuffer = new_buf;
1392 ftdi->readbuffer_chunksize = chunksize;
1393
1394 return 0;
1395}
1396
1397/**
1398 Get read buffer chunk size.
1399
1400 \param ftdi pointer to ftdi_context
1401 \param chunksize Pointer to store chunk size in
1402
1403 \retval 0: all fine
1404*/
1405int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1406{
1407 *chunksize = ftdi->readbuffer_chunksize;
1408 return 0;
1409}
1410
1411
1412/**
1413 Enable bitbang mode.
1414
1415 For advanced bitbang modes of the FT2232C chip use ftdi_set_bitmode().
1416
1417 \param ftdi pointer to ftdi_context
1418 \param bitmask Bitmask to configure lines.
1419 HIGH/ON value configures a line as output.
1420
1421 \retval 0: all fine
1422 \retval -1: can't enable bitbang mode
1423*/
1424int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1425{
1426 unsigned short usb_val;
1427
1428 usb_val = bitmask; // low byte: bitmask
1429 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1430 usb_val |= (ftdi->bitbang_mode << 8);
1431
1432 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1433 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1434 NULL, 0, ftdi->usb_write_timeout) != 0)
1435 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1436
1437 ftdi->bitbang_enabled = 1;
1438 return 0;
1439}
1440
1441/**
1442 Disable bitbang mode.
1443
1444 \param ftdi pointer to ftdi_context
1445
1446 \retval 0: all fine
1447 \retval -1: can't disable bitbang mode
1448*/
1449int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1450{
1451 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1452 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1453
1454 ftdi->bitbang_enabled = 0;
1455 return 0;
1456}
1457
1458/**
1459 Enable advanced bitbang mode for FT2232C chips.
1460
1461 \param ftdi pointer to ftdi_context
1462 \param bitmask Bitmask to configure lines.
1463 HIGH/ON value configures a line as output.
1464 \param mode Bitbang mode: 1 for normal mode, 2 for SPI mode
1465
1466 \retval 0: all fine
1467 \retval -1: can't enable bitbang mode
1468*/
1469int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1470{
1471 unsigned short usb_val;
1472
1473 usb_val = bitmask; // low byte: bitmask
1474 usb_val |= (mode << 8);
1475 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1476 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1477
1478 ftdi->bitbang_mode = mode;
1479 ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0;
1480 return 0;
1481}
1482
1483/**
1484 Directly read pin state. Useful for bitbang mode.
1485
1486 \param ftdi pointer to ftdi_context
1487 \param pins Pointer to store pins into
1488
1489 \retval 0: all fine
1490 \retval -1: read pins failed
1491*/
1492int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1493{
1494 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (char *)pins, 1, ftdi->usb_read_timeout) != 1)
1495 ftdi_error_return(-1, "read pins failed");
1496
1497 return 0;
1498}
1499
1500/**
1501 Set latency timer
1502
1503 The FTDI chip keeps data in the internal buffer for a specific
1504 amount of time if the buffer is not full yet to decrease
1505 load on the usb bus.
1506
1507 \param ftdi pointer to ftdi_context
1508 \param latency Value between 1 and 255
1509
1510 \retval 0: all fine
1511 \retval -1: latency out of range
1512 \retval -2: unable to set latency timer
1513*/
1514int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1515{
1516 unsigned short usb_val;
1517
1518 if (latency < 1)
1519 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1520
1521 usb_val = latency;
1522 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1523 ftdi_error_return(-2, "unable to set latency timer");
1524
1525 return 0;
1526}
1527
1528/**
1529 Get latency timer
1530
1531 \param ftdi pointer to ftdi_context
1532 \param latency Pointer to store latency value in
1533
1534 \retval 0: all fine
1535 \retval -1: unable to get latency timer
1536*/
1537int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1538{
1539 unsigned short usb_val;
1540 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1541 ftdi_error_return(-1, "reading latency timer failed");
1542
1543 *latency = (unsigned char)usb_val;
1544 return 0;
1545}
1546
1547/**
1548 Poll modem status information
1549
1550 This function allows the retrieve the two status bytes of the device.
1551 The device sends these bytes also as a header for each read access
1552 where they are discarded by ftdi_read_data(). The chip generates
1553 the two stripped status bytes in the absence of data every 40 ms.
1554
1555 Layout of the first byte:
1556 - B0..B3 - must be 0
1557 - B4 Clear to send (CTS)
1558 0 = inactive
1559 1 = active
1560 - B5 Data set ready (DTS)
1561 0 = inactive
1562 1 = active
1563 - B6 Ring indicator (RI)
1564 0 = inactive
1565 1 = active
1566 - B7 Receive line signal detect (RLSD)
1567 0 = inactive
1568 1 = active
1569
1570 Layout of the second byte:
1571 - B0 Data ready (DR)
1572 - B1 Overrun error (OE)
1573 - B2 Parity error (PE)
1574 - B3 Framing error (FE)
1575 - B4 Break interrupt (BI)
1576 - B5 Transmitter holding register (THRE)
1577 - B6 Transmitter empty (TEMT)
1578 - B7 Error in RCVR FIFO
1579
1580 \param ftdi pointer to ftdi_context
1581 \param status Pointer to store status information in. Must be two bytes.
1582
1583 \retval 0: all fine
1584 \retval -1: unable to retrieve status information
1585*/
1586int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1587{
1588 char usb_val[2];
1589
1590 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, usb_val, 2, ftdi->usb_read_timeout) != 2)
1591 ftdi_error_return(-1, "getting modem status failed");
1592
1593 *status = (usb_val[1] << 8) | usb_val[0];
1594
1595 return 0;
1596}
1597
1598/**
1599 Set flowcontrol for ftdi chip
1600
1601 \param ftdi pointer to ftdi_context
1602 \param flowctrl flow control to use. should be
1603 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
1604
1605 \retval 0: all fine
1606 \retval -1: set flow control failed
1607*/
1608int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
1609{
1610 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1611 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
1612 NULL, 0, ftdi->usb_write_timeout) != 0)
1613 ftdi_error_return(-1, "set flow control failed");
1614
1615 return 0;
1616}
1617
1618/**
1619 Set dtr line
1620
1621 \param ftdi pointer to ftdi_context
1622 \param state state to set line to (1 or 0)
1623
1624 \retval 0: all fine
1625 \retval -1: set dtr failed
1626*/
1627int ftdi_setdtr(struct ftdi_context *ftdi, int state)
1628{
1629 unsigned short usb_val;
1630
1631 if (state)
1632 usb_val = SIO_SET_DTR_HIGH;
1633 else
1634 usb_val = SIO_SET_DTR_LOW;
1635
1636 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1637 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1638 NULL, 0, ftdi->usb_write_timeout) != 0)
1639 ftdi_error_return(-1, "set dtr failed");
1640
1641 return 0;
1642}
1643
1644/**
1645 Set rts line
1646
1647 \param ftdi pointer to ftdi_context
1648 \param state state to set line to (1 or 0)
1649
1650 \retval 0: all fine
1651 \retval -1 set rts failed
1652*/
1653int ftdi_setrts(struct ftdi_context *ftdi, int state)
1654{
1655 unsigned short usb_val;
1656
1657 if (state)
1658 usb_val = SIO_SET_RTS_HIGH;
1659 else
1660 usb_val = SIO_SET_RTS_LOW;
1661
1662 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1663 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1664 NULL, 0, ftdi->usb_write_timeout) != 0)
1665 ftdi_error_return(-1, "set of rts failed");
1666
1667 return 0;
1668}
1669
1670/**
1671 Set dtr and rts line in one pass
1672
1673 \param ftdi pointer to ftdi_context
1674 \param dtr DTR state to set line to (1 or 0)
1675 \param rts RTS state to set line to (1 or 0)
1676
1677 \retval 0: all fine
1678 \retval -1 set dtr/rts failed
1679 */
1680int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
1681{
1682 unsigned short usb_val;
1683
1684 if (dtr)
1685 usb_val = SIO_SET_DTR_HIGH;
1686 else
1687 usb_val = SIO_SET_DTR_LOW;
1688
1689 if (rts)
1690 usb_val |= SIO_SET_RTS_HIGH;
1691 else
1692 usb_val |= SIO_SET_RTS_LOW;
1693
1694 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1695 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
1696 NULL, 0, ftdi->usb_write_timeout) != 0)
1697 ftdi_error_return(-1, "set of rts/dtr failed");
1698
1699 return 0;
1700}
1701
1702/**
1703 Set the special event character
1704
1705 \param ftdi pointer to ftdi_context
1706 \param eventch Event character
1707 \param enable 0 to disable the event character, non-zero otherwise
1708
1709 \retval 0: all fine
1710 \retval -1: unable to set event character
1711*/
1712int ftdi_set_event_char(struct ftdi_context *ftdi,
1713 unsigned char eventch, unsigned char enable)
1714{
1715 unsigned short usb_val;
1716
1717 usb_val = eventch;
1718 if (enable)
1719 usb_val |= 1 << 8;
1720
1721 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1722 ftdi_error_return(-1, "setting event character failed");
1723
1724 return 0;
1725}
1726
1727/**
1728 Set error character
1729
1730 \param ftdi pointer to ftdi_context
1731 \param errorch Error character
1732 \param enable 0 to disable the error character, non-zero otherwise
1733
1734 \retval 0: all fine
1735 \retval -1: unable to set error character
1736*/
1737int ftdi_set_error_char(struct ftdi_context *ftdi,
1738 unsigned char errorch, unsigned char enable)
1739{
1740 unsigned short usb_val;
1741
1742 usb_val = errorch;
1743 if (enable)
1744 usb_val |= 1 << 8;
1745
1746 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0)
1747 ftdi_error_return(-1, "setting error character failed");
1748
1749 return 0;
1750}
1751
1752/**
1753 Set the eeprom size
1754
1755 \param ftdi pointer to ftdi_context
1756 \param eeprom Pointer to ftdi_eeprom
1757 \param size
1758
1759*/
1760void ftdi_eeprom_setsize(struct ftdi_context *ftdi, struct ftdi_eeprom *eeprom, int size)
1761{
1762 ftdi->eeprom_size=size;
1763 eeprom->size=size;
1764}
1765
1766/**
1767 Init eeprom with default values.
1768
1769 \param eeprom Pointer to ftdi_eeprom
1770*/
1771void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
1772{
1773 eeprom->vendor_id = 0x0403;
1774 eeprom->product_id = 0x6001;
1775
1776 eeprom->self_powered = 1;
1777 eeprom->remote_wakeup = 1;
1778 eeprom->BM_type_chip = 1;
1779
1780 eeprom->in_is_isochronous = 0;
1781 eeprom->out_is_isochronous = 0;
1782 eeprom->suspend_pull_downs = 0;
1783
1784 eeprom->use_serial = 0;
1785 eeprom->change_usb_version = 0;
1786 eeprom->usb_version = 0x0200;
1787 eeprom->max_power = 0;
1788
1789 eeprom->manufacturer = NULL;
1790 eeprom->product = NULL;
1791 eeprom->serial = NULL;
1792
1793 eeprom->size = FTDI_DEFAULT_EEPROM_SIZE;
1794}
1795
1796/**
1797 Build binary output from ftdi_eeprom structure.
1798 Output is suitable for ftdi_write_eeprom().
1799
1800 \param eeprom Pointer to ftdi_eeprom
1801 \param output Buffer of 128 bytes to store eeprom image to
1802
1803 \retval >0: used eeprom size
1804 \retval -1: eeprom size (128 bytes) exceeded by custom strings
1805*/
1806int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
1807{
1808 unsigned char i, j;
1809 unsigned short checksum, value;
1810 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1811 int size_check;
1812
1813 if (eeprom->manufacturer != NULL)
1814 manufacturer_size = strlen(eeprom->manufacturer);
1815 if (eeprom->product != NULL)
1816 product_size = strlen(eeprom->product);
1817 if (eeprom->serial != NULL)
1818 serial_size = strlen(eeprom->serial);
1819
1820 size_check = eeprom->size;
1821 size_check -= 28; // 28 are always in use (fixed)
1822
1823 // Top half of a 256byte eeprom is used just for strings and checksum
1824 // it seems that the FTDI chip will not read these strings from the lower half
1825 // Each string starts with two bytes; offset and type (0x03 for string)
1826 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1827 if (eeprom->size>=256)size_check = 120;
1828 size_check -= manufacturer_size*2;
1829 size_check -= product_size*2;
1830 size_check -= serial_size*2;
1831
1832 // eeprom size exceeded?
1833 if (size_check < 0)
1834 return (-1);
1835
1836 // empty eeprom
1837 memset (output, 0, eeprom->size);
1838
1839 // Addr 00: Stay 00 00
1840 // Addr 02: Vendor ID
1841 output[0x02] = eeprom->vendor_id;
1842 output[0x03] = eeprom->vendor_id >> 8;
1843
1844 // Addr 04: Product ID
1845 output[0x04] = eeprom->product_id;
1846 output[0x05] = eeprom->product_id >> 8;
1847
1848 // Addr 06: Device release number (0400h for BM features)
1849 output[0x06] = 0x00;
1850
1851 if (eeprom->BM_type_chip == 1)
1852 output[0x07] = 0x04;
1853 else
1854 output[0x07] = 0x02;
1855
1856 // Addr 08: Config descriptor
1857 // Bit 7: always 1
1858 // Bit 6: 1 if this device is self powered, 0 if bus powered
1859 // Bit 5: 1 if this device uses remote wakeup
1860 // Bit 4: 1 if this device is battery powered
1861 j = 0x80;
1862 if (eeprom->self_powered == 1)
1863 j |= 0x40;
1864 if (eeprom->remote_wakeup == 1)
1865 j |= 0x20;
1866 output[0x08] = j;
1867
1868 // Addr 09: Max power consumption: max power = value * 2 mA
1869 output[0x09] = eeprom->max_power;
1870
1871 // Addr 0A: Chip configuration
1872 // Bit 7: 0 - reserved
1873 // Bit 6: 0 - reserved
1874 // Bit 5: 0 - reserved
1875 // Bit 4: 1 - Change USB version
1876 // Bit 3: 1 - Use the serial number string
1877 // Bit 2: 1 - Enable suspend pull downs for lower power
1878 // Bit 1: 1 - Out EndPoint is Isochronous
1879 // Bit 0: 1 - In EndPoint is Isochronous
1880 //
1881 j = 0;
1882 if (eeprom->in_is_isochronous == 1)
1883 j = j | 1;
1884 if (eeprom->out_is_isochronous == 1)
1885 j = j | 2;
1886 if (eeprom->suspend_pull_downs == 1)
1887 j = j | 4;
1888 if (eeprom->use_serial == 1)
1889 j = j | 8;
1890 if (eeprom->change_usb_version == 1)
1891 j = j | 16;
1892 output[0x0A] = j;
1893
1894 // Addr 0B: reserved
1895 output[0x0B] = 0x00;
1896
1897 // Addr 0C: USB version low byte when 0x0A bit 4 is set
1898 // Addr 0D: USB version high byte when 0x0A bit 4 is set
1899 if (eeprom->change_usb_version == 1)
1900 {
1901 output[0x0C] = eeprom->usb_version;
1902 output[0x0D] = eeprom->usb_version >> 8;
1903 }
1904
1905
1906 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
1907 // Addr 0F: Length of manufacturer string
1908 output[0x0F] = manufacturer_size*2 + 2;
1909
1910 // Addr 10: Offset of the product string + 0x80, calculated later
1911 // Addr 11: Length of product string
1912 output[0x11] = product_size*2 + 2;
1913
1914 // Addr 12: Offset of the serial string + 0x80, calculated later
1915 // Addr 13: Length of serial string
1916 output[0x13] = serial_size*2 + 2;
1917
1918 // Dynamic content
1919 i=0x14;
1920 if (eeprom->size>=256) i = 0x80;
1921
1922
1923 // Output manufacturer
1924 output[0x0E] = i | 0x80; // calculate offset
1925 output[i++] = manufacturer_size*2 + 2;
1926 output[i++] = 0x03; // type: string
1927 for (j = 0; j < manufacturer_size; j++)
1928 {
1929 output[i] = eeprom->manufacturer[j], i++;
1930 output[i] = 0x00, i++;
1931 }
1932
1933 // Output product name
1934 output[0x10] = i | 0x80; // calculate offset
1935 output[i] = product_size*2 + 2, i++;
1936 output[i] = 0x03, i++;
1937 for (j = 0; j < product_size; j++)
1938 {
1939 output[i] = eeprom->product[j], i++;
1940 output[i] = 0x00, i++;
1941 }
1942
1943 // Output serial
1944 output[0x12] = i | 0x80; // calculate offset
1945 output[i] = serial_size*2 + 2, i++;
1946 output[i] = 0x03, i++;
1947 for (j = 0; j < serial_size; j++)
1948 {
1949 output[i] = eeprom->serial[j], i++;
1950 output[i] = 0x00, i++;
1951 }
1952
1953 // calculate checksum
1954 checksum = 0xAAAA;
1955
1956 for (i = 0; i < eeprom->size/2-1; i++)
1957 {
1958 value = output[i*2];
1959 value += output[(i*2)+1] << 8;
1960
1961 checksum = value^checksum;
1962 checksum = (checksum << 1) | (checksum >> 15);
1963 }
1964
1965 output[eeprom->size-2] = checksum;
1966 output[eeprom->size-1] = checksum >> 8;
1967
1968 return size_check;
1969}
1970
1971/**
1972 Decode binary EEPROM image into an ftdi_eeprom structure.
1973
1974 \param eeprom Pointer to ftdi_eeprom which will be filled in.
1975 \param buf Buffer of \a size bytes of raw eeprom data
1976 \param size size size of eeprom data in bytes
1977
1978 \retval 0: all fine
1979 \retval -1: something went wrong
1980
1981 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
1982 FIXME: Strings are malloc'ed here and should be freed somewhere
1983*/
1984int ftdi_eeprom_decode(struct ftdi_eeprom *eeprom, unsigned char *buf, int size)
1985{
1986 unsigned char i, j;
1987 unsigned short checksum, eeprom_checksum, value;
1988 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
1989 int size_check;
1990 int eeprom_size = 128;
1991#if 0
1992 size_check = eeprom->size;
1993 size_check -= 28; // 28 are always in use (fixed)
1994
1995 // Top half of a 256byte eeprom is used just for strings and checksum
1996 // it seems that the FTDI chip will not read these strings from the lower half
1997 // Each string starts with two bytes; offset and type (0x03 for string)
1998 // the checksum needs two bytes, so without the string data that 8 bytes from the top half
1999 if (eeprom->size>=256)size_check = 120;
2000 size_check -= manufacturer_size*2;
2001 size_check -= product_size*2;
2002 size_check -= serial_size*2;
2003
2004 // eeprom size exceeded?
2005 if (size_check < 0)
2006 return (-1);
2007#endif
2008
2009 // empty eeprom struct
2010 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2011
2012 // Addr 00: Stay 00 00
2013
2014 // Addr 02: Vendor ID
2015 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2016
2017 // Addr 04: Product ID
2018 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2019
2020 value = buf[0x06] + (buf[0x07]<<8);
2021 switch (value)
2022 {
2023 case 0x0400:
2024 eeprom->BM_type_chip = 1;
2025 break;
2026 case 0x0200:
2027 eeprom->BM_type_chip = 0;
2028 break;
2029 default: // Unknown device
2030 eeprom->BM_type_chip = 0;
2031 break;
2032 }
2033
2034 // Addr 08: Config descriptor
2035 // Bit 7: always 1
2036 // Bit 6: 1 if this device is self powered, 0 if bus powered
2037 // Bit 5: 1 if this device uses remote wakeup
2038 // Bit 4: 1 if this device is battery powered
2039 j = buf[0x08];
2040 if (j&0x40) eeprom->self_powered = 1;
2041 if (j&0x20) eeprom->remote_wakeup = 1;
2042
2043 // Addr 09: Max power consumption: max power = value * 2 mA
2044 eeprom->max_power = buf[0x09];
2045
2046 // Addr 0A: Chip configuration
2047 // Bit 7: 0 - reserved
2048 // Bit 6: 0 - reserved
2049 // Bit 5: 0 - reserved
2050 // Bit 4: 1 - Change USB version
2051 // Bit 3: 1 - Use the serial number string
2052 // Bit 2: 1 - Enable suspend pull downs for lower power
2053 // Bit 1: 1 - Out EndPoint is Isochronous
2054 // Bit 0: 1 - In EndPoint is Isochronous
2055 //
2056 j = buf[0x0A];
2057 if (j&0x01) eeprom->in_is_isochronous = 1;
2058 if (j&0x02) eeprom->out_is_isochronous = 1;
2059 if (j&0x04) eeprom->suspend_pull_downs = 1;
2060 if (j&0x08) eeprom->use_serial = 1;
2061 if (j&0x10) eeprom->change_usb_version = 1;
2062
2063 // Addr 0B: reserved
2064
2065 // Addr 0C: USB version low byte when 0x0A bit 4 is set
2066 // Addr 0D: USB version high byte when 0x0A bit 4 is set
2067 if (eeprom->change_usb_version == 1)
2068 {
2069 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2070 }
2071
2072 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2073 // Addr 0F: Length of manufacturer string
2074 manufacturer_size = buf[0x0F]/2;
2075 if (manufacturer_size > 0) eeprom->manufacturer = malloc(manufacturer_size);
2076 else eeprom->manufacturer = NULL;
2077
2078 // Addr 10: Offset of the product string + 0x80, calculated later
2079 // Addr 11: Length of product string
2080 product_size = buf[0x11]/2;
2081 if (product_size > 0) eeprom->product = malloc(product_size);
2082 else eeprom->product = NULL;
2083
2084 // Addr 12: Offset of the serial string + 0x80, calculated later
2085 // Addr 13: Length of serial string
2086 serial_size = buf[0x13]/2;
2087 if (serial_size > 0) eeprom->serial = malloc(serial_size);
2088 else eeprom->serial = NULL;
2089
2090 // Decode manufacturer
2091 i = buf[0x0E] & 0x7f; // offset
2092 for (j=0;j<manufacturer_size-1;j++)
2093 {
2094 eeprom->manufacturer[j] = buf[2*j+i+2];
2095 }
2096 eeprom->manufacturer[j] = '\0';
2097
2098 // Decode product name
2099 i = buf[0x10] & 0x7f; // offset
2100 for (j=0;j<product_size-1;j++)
2101 {
2102 eeprom->product[j] = buf[2*j+i+2];
2103 }
2104 eeprom->product[j] = '\0';
2105
2106 // Decode serial
2107 i = buf[0x12] & 0x7f; // offset
2108 for (j=0;j<serial_size-1;j++)
2109 {
2110 eeprom->serial[j] = buf[2*j+i+2];
2111 }
2112 eeprom->serial[j] = '\0';
2113
2114 // verify checksum
2115 checksum = 0xAAAA;
2116
2117 for (i = 0; i < eeprom_size/2-1; i++)
2118 {
2119 value = buf[i*2];
2120 value += buf[(i*2)+1] << 8;
2121
2122 checksum = value^checksum;
2123 checksum = (checksum << 1) | (checksum >> 15);
2124 }
2125
2126 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2127
2128 if (eeprom_checksum != checksum)
2129 {
2130 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2131 return -1;
2132 }
2133
2134 return 0;
2135}
2136
2137/**
2138 Read eeprom location
2139
2140 \param ftdi pointer to ftdi_context
2141 \param eeprom_addr Address of eeprom location to be read
2142 \param eeprom_val Pointer to store read eeprom location
2143
2144 \retval 0: all fine
2145 \retval -1: read failed
2146*/
2147int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
2148{
2149 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
2150 ftdi_error_return(-1, "reading eeprom failed");
2151
2152 return 0;
2153}
2154
2155/**
2156 Read eeprom
2157
2158 \param ftdi pointer to ftdi_context
2159 \param eeprom Pointer to store eeprom into
2160
2161 \retval 0: all fine
2162 \retval -1: read failed
2163*/
2164int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2165{
2166 int i;
2167
2168 for (i = 0; i < ftdi->eeprom_size/2; i++)
2169 {
2170 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2171 ftdi_error_return(-1, "reading eeprom failed");
2172 }
2173
2174 return 0;
2175}
2176
2177/*
2178 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
2179 Function is only used internally
2180 \internal
2181*/
2182static unsigned char ftdi_read_chipid_shift(unsigned char value)
2183{
2184 return ((value & 1) << 1) |
2185 ((value & 2) << 5) |
2186 ((value & 4) >> 2) |
2187 ((value & 8) << 4) |
2188 ((value & 16) >> 1) |
2189 ((value & 32) >> 1) |
2190 ((value & 64) >> 4) |
2191 ((value & 128) >> 2);
2192}
2193
2194/**
2195 Read the FTDIChip-ID from R-type devices
2196
2197 \param ftdi pointer to ftdi_context
2198 \param chipid Pointer to store FTDIChip-ID
2199
2200 \retval 0: all fine
2201 \retval -1: read failed
2202*/
2203int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
2204{
2205 unsigned int a = 0, b = 0;
2206
2207 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (char *)&a, 2, ftdi->usb_read_timeout) == 2)
2208 {
2209 a = a << 8 | a >> 8;
2210 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (char *)&b, 2, ftdi->usb_read_timeout) == 2)
2211 {
2212 b = b << 8 | b >> 8;
2213 a = (a << 16) | (b & 0xFFFF);
2214 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
2215 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
2216 *chipid = a ^ 0xa5f0f7d1;
2217 return 0;
2218 }
2219 }
2220
2221 ftdi_error_return(-1, "read of FTDIChip-ID failed");
2222}
2223
2224/**
2225 Guesses size of eeprom by reading eeprom and comparing halves - will not work with blank eeprom
2226 Call this function then do a write then call again to see if size changes, if so write again.
2227
2228 \param ftdi pointer to ftdi_context
2229 \param eeprom Pointer to store eeprom into
2230 \param maxsize the size of the buffer to read into
2231
2232 \retval size of eeprom
2233*/
2234int ftdi_read_eeprom_getsize(struct ftdi_context *ftdi, unsigned char *eeprom, int maxsize)
2235{
2236 int i=0,j,minsize=32;
2237 int size=minsize;
2238
2239 do
2240 {
2241 for (j = 0; i < maxsize/2 && j<size; j++)
2242 {
2243 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,
2244 SIO_READ_EEPROM_REQUEST, 0, i,
2245 eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2)
2246 ftdi_error_return(-1, "reading eeprom failed");
2247 i++;
2248 }
2249 size*=2;
2250 }
2251 while (size<=maxsize && memcmp(eeprom,&eeprom[size/2],size/2)!=0);
2252
2253 return size/2;
2254}
2255
2256/**
2257 Write eeprom location
2258
2259 \param ftdi pointer to ftdi_context
2260 \param eeprom_addr Address of eeprom location to be written
2261 \param eeprom_val Value to be written
2262
2263 \retval 0: all fine
2264 \retval -1: read failed
2265*/
2266int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, unsigned short eeprom_val)
2267{
2268 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2269 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
2270 NULL, 0, ftdi->usb_write_timeout) != 0)
2271 ftdi_error_return(-1, "unable to write eeprom");
2272
2273 return 0;
2274}
2275
2276/**
2277 Write eeprom
2278
2279 \param ftdi pointer to ftdi_context
2280 \param eeprom Pointer to read eeprom from
2281
2282 \retval 0: all fine
2283 \retval -1: read failed
2284*/
2285int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
2286{
2287 unsigned short usb_val, status;
2288 int i, ret;
2289
2290 /* These commands were traced while running MProg */
2291 if ((ret = ftdi_usb_reset(ftdi)) != 0)
2292 return ret;
2293 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
2294 return ret;
2295 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
2296 return ret;
2297
2298 for (i = 0; i < ftdi->eeprom_size/2; i++)
2299 {
2300 usb_val = eeprom[i*2];
2301 usb_val += eeprom[(i*2)+1] << 8;
2302 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2303 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
2304 NULL, 0, ftdi->usb_write_timeout) != 0)
2305 ftdi_error_return(-1, "unable to write eeprom");
2306 }
2307
2308 return 0;
2309}
2310
2311/**
2312 Erase eeprom
2313
2314 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
2315
2316 \param ftdi pointer to ftdi_context
2317
2318 \retval 0: all fine
2319 \retval -1: erase failed
2320*/
2321int ftdi_erase_eeprom(struct ftdi_context *ftdi)
2322{
2323 if (usb_control_msg(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0)
2324 ftdi_error_return(-1, "unable to erase eeprom");
2325
2326 return 0;
2327}
2328
2329/**
2330 Get string representation for last error code
2331
2332 \param ftdi pointer to ftdi_context
2333
2334 \retval Pointer to error string
2335*/
2336char *ftdi_get_error_string (struct ftdi_context *ftdi)
2337{
2338 return ftdi->error_str;
2339}
2340
2341/* @} end of doxygen libftdi group */