Increment the refcount on devices we return from ftdi_usb_find_all()
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77 \retval -3: libusb_init() failed
78
79 \remark This should be called before all functions
80*/
81int ftdi_init(struct ftdi_context *ftdi)
82{
83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
84 ftdi->usb_ctx = NULL;
85 ftdi->usb_dev = NULL;
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
88
89 ftdi->type = TYPE_BM; /* chip type */
90 ftdi->baudrate = -1;
91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
92
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
97 ftdi->max_packet_size = 0;
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
103
104 ftdi_set_interface(ftdi, INTERFACE_ANY);
105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
106
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
110 ftdi->eeprom = eeprom;
111
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
114}
115
116/**
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
121struct ftdi_context *ftdi_new(void)
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
125 if (ftdi == NULL)
126 {
127 return NULL;
128 }
129
130 if (ftdi_init(ftdi) != 0)
131 {
132 free(ftdi);
133 return NULL;
134 }
135
136 return ftdi;
137}
138
139/**
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
143 \param interface Interface to use for FT2232C/2232H/4232H chips.
144
145 \retval 0: all fine
146 \retval -1: unknown interface
147 \retval -2: USB device unavailable
148*/
149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
150{
151 if (ftdi == NULL)
152 ftdi_error_return(-2, "USB device unavailable");
153
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
181 default:
182 ftdi_error_return(-1, "Unknown interface");
183 }
184 return 0;
185}
186
187/**
188 Deinitializes a ftdi_context.
189
190 \param ftdi pointer to ftdi_context
191*/
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
194 if (ftdi == NULL)
195 return;
196
197 ftdi_usb_close_internal (ftdi);
198
199 if (ftdi->readbuffer != NULL)
200 {
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
203 }
204
205 if (ftdi->eeprom != NULL)
206 {
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
231}
232
233/**
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
248 \param usb libusb libusb_device_handle to use
249*/
250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
251{
252 if (ftdi == NULL)
253 return;
254
255 ftdi->usb_dev = usb;
256}
257
258
259/**
260 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
261 needs to be deallocated by ftdi_list_free() after use.
262
263 \param ftdi pointer to ftdi_context
264 \param devlist Pointer where to store list of found devices
265 \param vendor Vendor ID to search for
266 \param product Product ID to search for
267
268 \retval >0: number of devices found
269 \retval -3: out of memory
270 \retval -5: libusb_get_device_list() failed
271 \retval -6: libusb_get_device_descriptor() failed
272*/
273int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
274{
275 struct ftdi_device_list **curdev;
276 libusb_device *dev;
277 libusb_device **devs;
278 int count = 0;
279 int i = 0;
280
281 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
282 ftdi_error_return(-5, "libusb_get_device_list() failed");
283
284 curdev = devlist;
285 *curdev = NULL;
286
287 while ((dev = devs[i++]) != NULL)
288 {
289 struct libusb_device_descriptor desc;
290
291 if (libusb_get_device_descriptor(dev, &desc) < 0)
292 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
293
294 if (desc.idVendor == vendor && desc.idProduct == product)
295 {
296 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
297 if (!*curdev)
298 ftdi_error_return_free_device_list(-3, "out of memory", devs);
299
300 (*curdev)->next = NULL;
301 (*curdev)->dev = dev;
302 libusb_ref_device(dev);
303 curdev = &(*curdev)->next;
304 count++;
305 }
306 }
307 libusb_free_device_list(devs,1);
308 return count;
309}
310
311/**
312 Frees a usb device list.
313
314 \param devlist USB device list created by ftdi_usb_find_all()
315*/
316void ftdi_list_free(struct ftdi_device_list **devlist)
317{
318 struct ftdi_device_list *curdev, *next;
319
320 for (curdev = *devlist; curdev != NULL;)
321 {
322 next = curdev->next;
323 libusb_unref_device(curdev->dev);
324 free(curdev);
325 curdev = next;
326 }
327
328 *devlist = NULL;
329}
330
331/**
332 Frees a usb device list.
333
334 \param devlist USB device list created by ftdi_usb_find_all()
335*/
336void ftdi_list_free2(struct ftdi_device_list *devlist)
337{
338 ftdi_list_free(&devlist);
339}
340
341/**
342 Return device ID strings from the usb device.
343
344 The parameters manufacturer, description and serial may be NULL
345 or pointer to buffers to store the fetched strings.
346
347 \note Use this function only in combination with ftdi_usb_find_all()
348 as it closes the internal "usb_dev" after use.
349
350 \param ftdi pointer to ftdi_context
351 \param dev libusb usb_dev to use
352 \param manufacturer Store manufacturer string here if not NULL
353 \param mnf_len Buffer size of manufacturer string
354 \param description Store product description string here if not NULL
355 \param desc_len Buffer size of product description string
356 \param serial Store serial string here if not NULL
357 \param serial_len Buffer size of serial string
358
359 \retval 0: all fine
360 \retval -1: wrong arguments
361 \retval -4: unable to open device
362 \retval -7: get product manufacturer failed
363 \retval -8: get product description failed
364 \retval -9: get serial number failed
365 \retval -11: libusb_get_device_descriptor() failed
366*/
367int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
368 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
369{
370 struct libusb_device_descriptor desc;
371
372 if ((ftdi==NULL) || (dev==NULL))
373 return -1;
374
375 if (libusb_open(dev, &ftdi->usb_dev) < 0)
376 ftdi_error_return(-4, "libusb_open() failed");
377
378 if (libusb_get_device_descriptor(dev, &desc) < 0)
379 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
380
381 if (manufacturer != NULL)
382 {
383 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
384 {
385 ftdi_usb_close_internal (ftdi);
386 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
387 }
388 }
389
390 if (description != NULL)
391 {
392 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
393 {
394 ftdi_usb_close_internal (ftdi);
395 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
396 }
397 }
398
399 if (serial != NULL)
400 {
401 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
402 {
403 ftdi_usb_close_internal (ftdi);
404 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
405 }
406 }
407
408 ftdi_usb_close_internal (ftdi);
409
410 return 0;
411}
412
413/**
414 * Internal function to determine the maximum packet size.
415 * \param ftdi pointer to ftdi_context
416 * \param dev libusb usb_dev to use
417 * \retval Maximum packet size for this device
418 */
419static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
420{
421 struct libusb_device_descriptor desc;
422 struct libusb_config_descriptor *config0;
423 unsigned int packet_size;
424
425 // Sanity check
426 if (ftdi == NULL || dev == NULL)
427 return 64;
428
429 // Determine maximum packet size. Init with default value.
430 // New hi-speed devices from FTDI use a packet size of 512 bytes
431 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
432 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H )
433 packet_size = 512;
434 else
435 packet_size = 64;
436
437 if (libusb_get_device_descriptor(dev, &desc) < 0)
438 return packet_size;
439
440 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
441 return packet_size;
442
443 if (desc.bNumConfigurations > 0)
444 {
445 if (ftdi->interface < config0->bNumInterfaces)
446 {
447 struct libusb_interface interface = config0->interface[ftdi->interface];
448 if (interface.num_altsetting > 0)
449 {
450 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
451 if (descriptor.bNumEndpoints > 0)
452 {
453 packet_size = descriptor.endpoint[0].wMaxPacketSize;
454 }
455 }
456 }
457 }
458
459 libusb_free_config_descriptor (config0);
460 return packet_size;
461}
462
463/**
464 Opens a ftdi device given by an usb_device.
465
466 \param ftdi pointer to ftdi_context
467 \param dev libusb usb_dev to use
468
469 \retval 0: all fine
470 \retval -3: unable to config device
471 \retval -4: unable to open device
472 \retval -5: unable to claim device
473 \retval -6: reset failed
474 \retval -7: set baudrate failed
475 \retval -8: ftdi context invalid
476 \retval -9: libusb_get_device_descriptor() failed
477 \retval -10: libusb_get_config_descriptor() failed
478 \retval -11: libusb_detach_kernel_driver() failed
479 \retval -12: libusb_get_configuration() failed
480*/
481int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
482{
483 struct libusb_device_descriptor desc;
484 struct libusb_config_descriptor *config0;
485 int cfg, cfg0, detach_errno = 0;
486
487 if (ftdi == NULL)
488 ftdi_error_return(-8, "ftdi context invalid");
489
490 if (libusb_open(dev, &ftdi->usb_dev) < 0)
491 ftdi_error_return(-4, "libusb_open() failed");
492
493 if (libusb_get_device_descriptor(dev, &desc) < 0)
494 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
495
496 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
497 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
498 cfg0 = config0->bConfigurationValue;
499 libusb_free_config_descriptor (config0);
500
501 // Try to detach ftdi_sio kernel module.
502 //
503 // The return code is kept in a separate variable and only parsed
504 // if usb_set_configuration() or usb_claim_interface() fails as the
505 // detach operation might be denied and everything still works fine.
506 // Likely scenario is a static ftdi_sio kernel module.
507 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
508 {
509 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
510 detach_errno = errno;
511 }
512
513 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
514 ftdi_error_return(-12, "libusb_get_configuration () failed");
515 // set configuration (needed especially for windows)
516 // tolerate EBUSY: one device with one configuration, but two interfaces
517 // and libftdi sessions to both interfaces (e.g. FT2232)
518 if (desc.bNumConfigurations > 0 && cfg != cfg0)
519 {
520 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
521 {
522 ftdi_usb_close_internal (ftdi);
523 if (detach_errno == EPERM)
524 {
525 ftdi_error_return(-8, "inappropriate permissions on device!");
526 }
527 else
528 {
529 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
530 }
531 }
532 }
533
534 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
535 {
536 ftdi_usb_close_internal (ftdi);
537 if (detach_errno == EPERM)
538 {
539 ftdi_error_return(-8, "inappropriate permissions on device!");
540 }
541 else
542 {
543 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
544 }
545 }
546
547 if (ftdi_usb_reset (ftdi) != 0)
548 {
549 ftdi_usb_close_internal (ftdi);
550 ftdi_error_return(-6, "ftdi_usb_reset failed");
551 }
552
553 // Try to guess chip type
554 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
555 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
556 && desc.iSerialNumber == 0))
557 ftdi->type = TYPE_BM;
558 else if (desc.bcdDevice == 0x200)
559 ftdi->type = TYPE_AM;
560 else if (desc.bcdDevice == 0x500)
561 ftdi->type = TYPE_2232C;
562 else if (desc.bcdDevice == 0x600)
563 ftdi->type = TYPE_R;
564 else if (desc.bcdDevice == 0x700)
565 ftdi->type = TYPE_2232H;
566 else if (desc.bcdDevice == 0x800)
567 ftdi->type = TYPE_4232H;
568 else if (desc.bcdDevice == 0x900)
569 ftdi->type = TYPE_232H;
570
571 // Determine maximum packet size
572 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
573
574 if (ftdi_set_baudrate (ftdi, 9600) != 0)
575 {
576 ftdi_usb_close_internal (ftdi);
577 ftdi_error_return(-7, "set baudrate failed");
578 }
579
580 ftdi_error_return(0, "all fine");
581}
582
583/**
584 Opens the first device with a given vendor and product ids.
585
586 \param ftdi pointer to ftdi_context
587 \param vendor Vendor ID
588 \param product Product ID
589
590 \retval same as ftdi_usb_open_desc()
591*/
592int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
593{
594 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
595}
596
597/**
598 Opens the first device with a given, vendor id, product id,
599 description and serial.
600
601 \param ftdi pointer to ftdi_context
602 \param vendor Vendor ID
603 \param product Product ID
604 \param description Description to search for. Use NULL if not needed.
605 \param serial Serial to search for. Use NULL if not needed.
606
607 \retval 0: all fine
608 \retval -3: usb device not found
609 \retval -4: unable to open device
610 \retval -5: unable to claim device
611 \retval -6: reset failed
612 \retval -7: set baudrate failed
613 \retval -8: get product description failed
614 \retval -9: get serial number failed
615 \retval -12: libusb_get_device_list() failed
616 \retval -13: libusb_get_device_descriptor() failed
617*/
618int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
619 const char* description, const char* serial)
620{
621 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
622}
623
624/**
625 Opens the index-th device with a given, vendor id, product id,
626 description and serial.
627
628 \param ftdi pointer to ftdi_context
629 \param vendor Vendor ID
630 \param product Product ID
631 \param description Description to search for. Use NULL if not needed.
632 \param serial Serial to search for. Use NULL if not needed.
633 \param index Number of matching device to open if there are more than one, starts with 0.
634
635 \retval 0: all fine
636 \retval -1: usb_find_busses() failed
637 \retval -2: usb_find_devices() failed
638 \retval -3: usb device not found
639 \retval -4: unable to open device
640 \retval -5: unable to claim device
641 \retval -6: reset failed
642 \retval -7: set baudrate failed
643 \retval -8: get product description failed
644 \retval -9: get serial number failed
645 \retval -10: unable to close device
646 \retval -11: ftdi context invalid
647*/
648int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
649 const char* description, const char* serial, unsigned int index)
650{
651 libusb_device *dev;
652 libusb_device **devs;
653 char string[256];
654 int i = 0;
655
656 if (ftdi == NULL)
657 ftdi_error_return(-11, "ftdi context invalid");
658
659 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
660 ftdi_error_return(-12, "libusb_get_device_list() failed");
661
662 while ((dev = devs[i++]) != NULL)
663 {
664 struct libusb_device_descriptor desc;
665 int res;
666
667 if (libusb_get_device_descriptor(dev, &desc) < 0)
668 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
669
670 if (desc.idVendor == vendor && desc.idProduct == product)
671 {
672 if (libusb_open(dev, &ftdi->usb_dev) < 0)
673 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
674
675 if (description != NULL)
676 {
677 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
678 {
679 ftdi_usb_close_internal (ftdi);
680 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
681 }
682 if (strncmp(string, description, sizeof(string)) != 0)
683 {
684 ftdi_usb_close_internal (ftdi);
685 continue;
686 }
687 }
688 if (serial != NULL)
689 {
690 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
691 {
692 ftdi_usb_close_internal (ftdi);
693 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
694 }
695 if (strncmp(string, serial, sizeof(string)) != 0)
696 {
697 ftdi_usb_close_internal (ftdi);
698 continue;
699 }
700 }
701
702 ftdi_usb_close_internal (ftdi);
703
704 if (index > 0)
705 {
706 index--;
707 continue;
708 }
709
710 res = ftdi_usb_open_dev(ftdi, dev);
711 libusb_free_device_list(devs,1);
712 return res;
713 }
714 }
715
716 // device not found
717 ftdi_error_return_free_device_list(-3, "device not found", devs);
718}
719
720/**
721 Opens the ftdi-device described by a description-string.
722 Intended to be used for parsing a device-description given as commandline argument.
723
724 \param ftdi pointer to ftdi_context
725 \param description NULL-terminated description-string, using this format:
726 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
727 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
728 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
729 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
730
731 \note The description format may be extended in later versions.
732
733 \retval 0: all fine
734 \retval -2: libusb_get_device_list() failed
735 \retval -3: usb device not found
736 \retval -4: unable to open device
737 \retval -5: unable to claim device
738 \retval -6: reset failed
739 \retval -7: set baudrate failed
740 \retval -8: get product description failed
741 \retval -9: get serial number failed
742 \retval -10: unable to close device
743 \retval -11: illegal description format
744 \retval -12: ftdi context invalid
745*/
746int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
747{
748 if (ftdi == NULL)
749 ftdi_error_return(-12, "ftdi context invalid");
750
751 if (description[0] == 0 || description[1] != ':')
752 ftdi_error_return(-11, "illegal description format");
753
754 if (description[0] == 'd')
755 {
756 libusb_device *dev;
757 libusb_device **devs;
758 unsigned int bus_number, device_address;
759 int i = 0;
760
761 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
762 ftdi_error_return(-2, "libusb_get_device_list() failed");
763
764 /* XXX: This doesn't handle symlinks/odd paths/etc... */
765 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
766 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
767
768 while ((dev = devs[i++]) != NULL)
769 {
770 int ret;
771 if (bus_number == libusb_get_bus_number (dev)
772 && device_address == libusb_get_device_address (dev))
773 {
774 ret = ftdi_usb_open_dev(ftdi, dev);
775 libusb_free_device_list(devs,1);
776 return ret;
777 }
778 }
779
780 // device not found
781 ftdi_error_return_free_device_list(-3, "device not found", devs);
782 }
783 else if (description[0] == 'i' || description[0] == 's')
784 {
785 unsigned int vendor;
786 unsigned int product;
787 unsigned int index=0;
788 const char *serial=NULL;
789 const char *startp, *endp;
790
791 errno=0;
792 startp=description+2;
793 vendor=strtoul((char*)startp,(char**)&endp,0);
794 if (*endp != ':' || endp == startp || errno != 0)
795 ftdi_error_return(-11, "illegal description format");
796
797 startp=endp+1;
798 product=strtoul((char*)startp,(char**)&endp,0);
799 if (endp == startp || errno != 0)
800 ftdi_error_return(-11, "illegal description format");
801
802 if (description[0] == 'i' && *endp != 0)
803 {
804 /* optional index field in i-mode */
805 if (*endp != ':')
806 ftdi_error_return(-11, "illegal description format");
807
808 startp=endp+1;
809 index=strtoul((char*)startp,(char**)&endp,0);
810 if (*endp != 0 || endp == startp || errno != 0)
811 ftdi_error_return(-11, "illegal description format");
812 }
813 if (description[0] == 's')
814 {
815 if (*endp != ':')
816 ftdi_error_return(-11, "illegal description format");
817
818 /* rest of the description is the serial */
819 serial=endp+1;
820 }
821
822 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
823 }
824 else
825 {
826 ftdi_error_return(-11, "illegal description format");
827 }
828}
829
830/**
831 Resets the ftdi device.
832
833 \param ftdi pointer to ftdi_context
834
835 \retval 0: all fine
836 \retval -1: FTDI reset failed
837 \retval -2: USB device unavailable
838*/
839int ftdi_usb_reset(struct ftdi_context *ftdi)
840{
841 if (ftdi == NULL || ftdi->usb_dev == NULL)
842 ftdi_error_return(-2, "USB device unavailable");
843
844 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
845 SIO_RESET_REQUEST, SIO_RESET_SIO,
846 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
847 ftdi_error_return(-1,"FTDI reset failed");
848
849 // Invalidate data in the readbuffer
850 ftdi->readbuffer_offset = 0;
851 ftdi->readbuffer_remaining = 0;
852
853 return 0;
854}
855
856/**
857 Clears the read buffer on the chip and the internal read buffer.
858
859 \param ftdi pointer to ftdi_context
860
861 \retval 0: all fine
862 \retval -1: read buffer purge failed
863 \retval -2: USB device unavailable
864*/
865int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
866{
867 if (ftdi == NULL || ftdi->usb_dev == NULL)
868 ftdi_error_return(-2, "USB device unavailable");
869
870 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
871 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
872 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
873 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
874
875 // Invalidate data in the readbuffer
876 ftdi->readbuffer_offset = 0;
877 ftdi->readbuffer_remaining = 0;
878
879 return 0;
880}
881
882/**
883 Clears the write buffer on the chip.
884
885 \param ftdi pointer to ftdi_context
886
887 \retval 0: all fine
888 \retval -1: write buffer purge failed
889 \retval -2: USB device unavailable
890*/
891int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
892{
893 if (ftdi == NULL || ftdi->usb_dev == NULL)
894 ftdi_error_return(-2, "USB device unavailable");
895
896 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
897 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
898 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
899 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
900
901 return 0;
902}
903
904/**
905 Clears the buffers on the chip and the internal read buffer.
906
907 \param ftdi pointer to ftdi_context
908
909 \retval 0: all fine
910 \retval -1: read buffer purge failed
911 \retval -2: write buffer purge failed
912 \retval -3: USB device unavailable
913*/
914int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
915{
916 int result;
917
918 if (ftdi == NULL || ftdi->usb_dev == NULL)
919 ftdi_error_return(-3, "USB device unavailable");
920
921 result = ftdi_usb_purge_rx_buffer(ftdi);
922 if (result < 0)
923 return -1;
924
925 result = ftdi_usb_purge_tx_buffer(ftdi);
926 if (result < 0)
927 return -2;
928
929 return 0;
930}
931
932
933
934/**
935 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
936
937 \param ftdi pointer to ftdi_context
938
939 \retval 0: all fine
940 \retval -1: usb_release failed
941 \retval -3: ftdi context invalid
942*/
943int ftdi_usb_close(struct ftdi_context *ftdi)
944{
945 int rtn = 0;
946
947 if (ftdi == NULL)
948 ftdi_error_return(-3, "ftdi context invalid");
949
950 if (ftdi->usb_dev != NULL)
951 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
952 rtn = -1;
953
954 ftdi_usb_close_internal (ftdi);
955
956 return rtn;
957}
958
959/**
960 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
961 Function is only used internally
962 \internal
963*/
964static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
965 unsigned short *value, unsigned short *index)
966{
967 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
968 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
969 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
970 int divisor, best_divisor, best_baud, best_baud_diff;
971 unsigned long encoded_divisor;
972 int i;
973
974 if (baudrate <= 0)
975 {
976 // Return error
977 return -1;
978 }
979
980 divisor = 24000000 / baudrate;
981
982 if (ftdi->type == TYPE_AM)
983 {
984 // Round down to supported fraction (AM only)
985 divisor -= am_adjust_dn[divisor & 7];
986 }
987
988 // Try this divisor and the one above it (because division rounds down)
989 best_divisor = 0;
990 best_baud = 0;
991 best_baud_diff = 0;
992 for (i = 0; i < 2; i++)
993 {
994 int try_divisor = divisor + i;
995 int baud_estimate;
996 int baud_diff;
997
998 // Round up to supported divisor value
999 if (try_divisor <= 8)
1000 {
1001 // Round up to minimum supported divisor
1002 try_divisor = 8;
1003 }
1004 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1005 {
1006 // BM doesn't support divisors 9 through 11 inclusive
1007 try_divisor = 12;
1008 }
1009 else if (divisor < 16)
1010 {
1011 // AM doesn't support divisors 9 through 15 inclusive
1012 try_divisor = 16;
1013 }
1014 else
1015 {
1016 if (ftdi->type == TYPE_AM)
1017 {
1018 // Round up to supported fraction (AM only)
1019 try_divisor += am_adjust_up[try_divisor & 7];
1020 if (try_divisor > 0x1FFF8)
1021 {
1022 // Round down to maximum supported divisor value (for AM)
1023 try_divisor = 0x1FFF8;
1024 }
1025 }
1026 else
1027 {
1028 if (try_divisor > 0x1FFFF)
1029 {
1030 // Round down to maximum supported divisor value (for BM)
1031 try_divisor = 0x1FFFF;
1032 }
1033 }
1034 }
1035 // Get estimated baud rate (to nearest integer)
1036 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1037 // Get absolute difference from requested baud rate
1038 if (baud_estimate < baudrate)
1039 {
1040 baud_diff = baudrate - baud_estimate;
1041 }
1042 else
1043 {
1044 baud_diff = baud_estimate - baudrate;
1045 }
1046 if (i == 0 || baud_diff < best_baud_diff)
1047 {
1048 // Closest to requested baud rate so far
1049 best_divisor = try_divisor;
1050 best_baud = baud_estimate;
1051 best_baud_diff = baud_diff;
1052 if (baud_diff == 0)
1053 {
1054 // Spot on! No point trying
1055 break;
1056 }
1057 }
1058 }
1059 // Encode the best divisor value
1060 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1061 // Deal with special cases for encoded value
1062 if (encoded_divisor == 1)
1063 {
1064 encoded_divisor = 0; // 3000000 baud
1065 }
1066 else if (encoded_divisor == 0x4001)
1067 {
1068 encoded_divisor = 1; // 2000000 baud (BM only)
1069 }
1070 // Split into "value" and "index" values
1071 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1072 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1073 {
1074 *index = (unsigned short)(encoded_divisor >> 8);
1075 *index &= 0xFF00;
1076 *index |= ftdi->index;
1077 }
1078 else
1079 *index = (unsigned short)(encoded_divisor >> 16);
1080
1081 // Return the nearest baud rate
1082 return best_baud;
1083}
1084
1085/**
1086 Sets the chip baud rate
1087
1088 \param ftdi pointer to ftdi_context
1089 \param baudrate baud rate to set
1090
1091 \retval 0: all fine
1092 \retval -1: invalid baudrate
1093 \retval -2: setting baudrate failed
1094 \retval -3: USB device unavailable
1095*/
1096int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1097{
1098 unsigned short value, index;
1099 int actual_baudrate;
1100
1101 if (ftdi == NULL || ftdi->usb_dev == NULL)
1102 ftdi_error_return(-3, "USB device unavailable");
1103
1104 if (ftdi->bitbang_enabled)
1105 {
1106 baudrate = baudrate*4;
1107 }
1108
1109 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1110 if (actual_baudrate <= 0)
1111 ftdi_error_return (-1, "Silly baudrate <= 0.");
1112
1113 // Check within tolerance (about 5%)
1114 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1115 || ((actual_baudrate < baudrate)
1116 ? (actual_baudrate * 21 < baudrate * 20)
1117 : (baudrate * 21 < actual_baudrate * 20)))
1118 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1119
1120 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1121 SIO_SET_BAUDRATE_REQUEST, value,
1122 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1123 ftdi_error_return (-2, "Setting new baudrate failed");
1124
1125 ftdi->baudrate = baudrate;
1126 return 0;
1127}
1128
1129/**
1130 Set (RS232) line characteristics.
1131 The break type can only be set via ftdi_set_line_property2()
1132 and defaults to "off".
1133
1134 \param ftdi pointer to ftdi_context
1135 \param bits Number of bits
1136 \param sbit Number of stop bits
1137 \param parity Parity mode
1138
1139 \retval 0: all fine
1140 \retval -1: Setting line property failed
1141*/
1142int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1143 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1144{
1145 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1146}
1147
1148/**
1149 Set (RS232) line characteristics
1150
1151 \param ftdi pointer to ftdi_context
1152 \param bits Number of bits
1153 \param sbit Number of stop bits
1154 \param parity Parity mode
1155 \param break_type Break type
1156
1157 \retval 0: all fine
1158 \retval -1: Setting line property failed
1159 \retval -2: USB device unavailable
1160*/
1161int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1162 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1163 enum ftdi_break_type break_type)
1164{
1165 unsigned short value = bits;
1166
1167 if (ftdi == NULL || ftdi->usb_dev == NULL)
1168 ftdi_error_return(-2, "USB device unavailable");
1169
1170 switch (parity)
1171 {
1172 case NONE:
1173 value |= (0x00 << 8);
1174 break;
1175 case ODD:
1176 value |= (0x01 << 8);
1177 break;
1178 case EVEN:
1179 value |= (0x02 << 8);
1180 break;
1181 case MARK:
1182 value |= (0x03 << 8);
1183 break;
1184 case SPACE:
1185 value |= (0x04 << 8);
1186 break;
1187 }
1188
1189 switch (sbit)
1190 {
1191 case STOP_BIT_1:
1192 value |= (0x00 << 11);
1193 break;
1194 case STOP_BIT_15:
1195 value |= (0x01 << 11);
1196 break;
1197 case STOP_BIT_2:
1198 value |= (0x02 << 11);
1199 break;
1200 }
1201
1202 switch (break_type)
1203 {
1204 case BREAK_OFF:
1205 value |= (0x00 << 14);
1206 break;
1207 case BREAK_ON:
1208 value |= (0x01 << 14);
1209 break;
1210 }
1211
1212 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1213 SIO_SET_DATA_REQUEST, value,
1214 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1215 ftdi_error_return (-1, "Setting new line property failed");
1216
1217 return 0;
1218}
1219
1220/**
1221 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1222
1223 \param ftdi pointer to ftdi_context
1224 \param buf Buffer with the data
1225 \param size Size of the buffer
1226
1227 \retval -666: USB device unavailable
1228 \retval <0: error code from usb_bulk_write()
1229 \retval >0: number of bytes written
1230*/
1231int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1232{
1233 int offset = 0;
1234 int actual_length;
1235
1236 if (ftdi == NULL || ftdi->usb_dev == NULL)
1237 ftdi_error_return(-666, "USB device unavailable");
1238
1239 while (offset < size)
1240 {
1241 int write_size = ftdi->writebuffer_chunksize;
1242
1243 if (offset+write_size > size)
1244 write_size = size-offset;
1245
1246 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1247 ftdi_error_return(-1, "usb bulk write failed");
1248
1249 offset += actual_length;
1250 }
1251
1252 return offset;
1253}
1254
1255static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1256{
1257 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1258 struct ftdi_context *ftdi = tc->ftdi;
1259 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1260
1261 packet_size = ftdi->max_packet_size;
1262
1263 actual_length = transfer->actual_length;
1264
1265 if (actual_length > 2)
1266 {
1267 // skip FTDI status bytes.
1268 // Maybe stored in the future to enable modem use
1269 num_of_chunks = actual_length / packet_size;
1270 chunk_remains = actual_length % packet_size;
1271 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1272
1273 ftdi->readbuffer_offset += 2;
1274 actual_length -= 2;
1275
1276 if (actual_length > packet_size - 2)
1277 {
1278 for (i = 1; i < num_of_chunks; i++)
1279 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1280 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1281 packet_size - 2);
1282 if (chunk_remains > 2)
1283 {
1284 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1285 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1286 chunk_remains-2);
1287 actual_length -= 2*num_of_chunks;
1288 }
1289 else
1290 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1291 }
1292
1293 if (actual_length > 0)
1294 {
1295 // data still fits in buf?
1296 if (tc->offset + actual_length <= tc->size)
1297 {
1298 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1299 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1300 tc->offset += actual_length;
1301
1302 ftdi->readbuffer_offset = 0;
1303 ftdi->readbuffer_remaining = 0;
1304
1305 /* Did we read exactly the right amount of bytes? */
1306 if (tc->offset == tc->size)
1307 {
1308 //printf("read_data exact rem %d offset %d\n",
1309 //ftdi->readbuffer_remaining, offset);
1310 tc->completed = 1;
1311 return;
1312 }
1313 }
1314 else
1315 {
1316 // only copy part of the data or size <= readbuffer_chunksize
1317 int part_size = tc->size - tc->offset;
1318 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1319 tc->offset += part_size;
1320
1321 ftdi->readbuffer_offset += part_size;
1322 ftdi->readbuffer_remaining = actual_length - part_size;
1323
1324 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1325 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1326 tc->completed = 1;
1327 return;
1328 }
1329 }
1330 }
1331 ret = libusb_submit_transfer (transfer);
1332 if (ret < 0)
1333 tc->completed = 1;
1334}
1335
1336
1337static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1338{
1339 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1340 struct ftdi_context *ftdi = tc->ftdi;
1341
1342 tc->offset += transfer->actual_length;
1343
1344 if (tc->offset == tc->size)
1345 {
1346 tc->completed = 1;
1347 }
1348 else
1349 {
1350 int write_size = ftdi->writebuffer_chunksize;
1351 int ret;
1352
1353 if (tc->offset + write_size > tc->size)
1354 write_size = tc->size - tc->offset;
1355
1356 transfer->length = write_size;
1357 transfer->buffer = tc->buf + tc->offset;
1358 ret = libusb_submit_transfer (transfer);
1359 if (ret < 0)
1360 tc->completed = 1;
1361 }
1362}
1363
1364
1365/**
1366 Writes data to the chip. Does not wait for completion of the transfer
1367 nor does it make sure that the transfer was successful.
1368
1369 Use libusb 1.0 asynchronous API.
1370
1371 \param ftdi pointer to ftdi_context
1372 \param buf Buffer with the data
1373 \param size Size of the buffer
1374
1375 \retval NULL: Some error happens when submit transfer
1376 \retval !NULL: Pointer to a ftdi_transfer_control
1377*/
1378
1379struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1380{
1381 struct ftdi_transfer_control *tc;
1382 struct libusb_transfer *transfer;
1383 int write_size, ret;
1384
1385 if (ftdi == NULL || ftdi->usb_dev == NULL)
1386 return NULL;
1387
1388 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1389 if (!tc)
1390 return NULL;
1391
1392 transfer = libusb_alloc_transfer(0);
1393 if (!transfer)
1394 {
1395 free(tc);
1396 return NULL;
1397 }
1398
1399 tc->ftdi = ftdi;
1400 tc->completed = 0;
1401 tc->buf = buf;
1402 tc->size = size;
1403 tc->offset = 0;
1404
1405 if (size < ftdi->writebuffer_chunksize)
1406 write_size = size;
1407 else
1408 write_size = ftdi->writebuffer_chunksize;
1409
1410 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1411 write_size, ftdi_write_data_cb, tc,
1412 ftdi->usb_write_timeout);
1413 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1414
1415 ret = libusb_submit_transfer(transfer);
1416 if (ret < 0)
1417 {
1418 libusb_free_transfer(transfer);
1419 free(tc);
1420 return NULL;
1421 }
1422 tc->transfer = transfer;
1423
1424 return tc;
1425}
1426
1427/**
1428 Reads data from the chip. Does not wait for completion of the transfer
1429 nor does it make sure that the transfer was successful.
1430
1431 Use libusb 1.0 asynchronous API.
1432
1433 \param ftdi pointer to ftdi_context
1434 \param buf Buffer with the data
1435 \param size Size of the buffer
1436
1437 \retval NULL: Some error happens when submit transfer
1438 \retval !NULL: Pointer to a ftdi_transfer_control
1439*/
1440
1441struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1442{
1443 struct ftdi_transfer_control *tc;
1444 struct libusb_transfer *transfer;
1445 int ret;
1446
1447 if (ftdi == NULL || ftdi->usb_dev == NULL)
1448 return NULL;
1449
1450 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1451 if (!tc)
1452 return NULL;
1453
1454 tc->ftdi = ftdi;
1455 tc->buf = buf;
1456 tc->size = size;
1457
1458 if (size <= ftdi->readbuffer_remaining)
1459 {
1460 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1461
1462 // Fix offsets
1463 ftdi->readbuffer_remaining -= size;
1464 ftdi->readbuffer_offset += size;
1465
1466 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1467
1468 tc->completed = 1;
1469 tc->offset = size;
1470 tc->transfer = NULL;
1471 return tc;
1472 }
1473
1474 tc->completed = 0;
1475 if (ftdi->readbuffer_remaining != 0)
1476 {
1477 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1478
1479 tc->offset = ftdi->readbuffer_remaining;
1480 }
1481 else
1482 tc->offset = 0;
1483
1484 transfer = libusb_alloc_transfer(0);
1485 if (!transfer)
1486 {
1487 free (tc);
1488 return NULL;
1489 }
1490
1491 ftdi->readbuffer_remaining = 0;
1492 ftdi->readbuffer_offset = 0;
1493
1494 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1495 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1496
1497 ret = libusb_submit_transfer(transfer);
1498 if (ret < 0)
1499 {
1500 libusb_free_transfer(transfer);
1501 free (tc);
1502 return NULL;
1503 }
1504 tc->transfer = transfer;
1505
1506 return tc;
1507}
1508
1509/**
1510 Wait for completion of the transfer.
1511
1512 Use libusb 1.0 asynchronous API.
1513
1514 \param tc pointer to ftdi_transfer_control
1515
1516 \retval < 0: Some error happens
1517 \retval >= 0: Data size transferred
1518*/
1519
1520int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1521{
1522 int ret;
1523
1524 while (!tc->completed)
1525 {
1526 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1527 if (ret < 0)
1528 {
1529 if (ret == LIBUSB_ERROR_INTERRUPTED)
1530 continue;
1531 libusb_cancel_transfer(tc->transfer);
1532 while (!tc->completed)
1533 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1534 break;
1535 libusb_free_transfer(tc->transfer);
1536 free (tc);
1537 return ret;
1538 }
1539 }
1540
1541 ret = tc->offset;
1542 /**
1543 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1544 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1545 **/
1546 if (tc->transfer)
1547 {
1548 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1549 ret = -1;
1550 libusb_free_transfer(tc->transfer);
1551 }
1552 free(tc);
1553 return ret;
1554}
1555
1556/**
1557 Configure write buffer chunk size.
1558 Default is 4096.
1559
1560 \param ftdi pointer to ftdi_context
1561 \param chunksize Chunk size
1562
1563 \retval 0: all fine
1564 \retval -1: ftdi context invalid
1565*/
1566int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1567{
1568 if (ftdi == NULL)
1569 ftdi_error_return(-1, "ftdi context invalid");
1570
1571 ftdi->writebuffer_chunksize = chunksize;
1572 return 0;
1573}
1574
1575/**
1576 Get write buffer chunk size.
1577
1578 \param ftdi pointer to ftdi_context
1579 \param chunksize Pointer to store chunk size in
1580
1581 \retval 0: all fine
1582 \retval -1: ftdi context invalid
1583*/
1584int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1585{
1586 if (ftdi == NULL)
1587 ftdi_error_return(-1, "ftdi context invalid");
1588
1589 *chunksize = ftdi->writebuffer_chunksize;
1590 return 0;
1591}
1592
1593/**
1594 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1595
1596 Automatically strips the two modem status bytes transfered during every read.
1597
1598 \param ftdi pointer to ftdi_context
1599 \param buf Buffer to store data in
1600 \param size Size of the buffer
1601
1602 \retval -666: USB device unavailable
1603 \retval <0: error code from libusb_bulk_transfer()
1604 \retval 0: no data was available
1605 \retval >0: number of bytes read
1606
1607*/
1608int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1609{
1610 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1611 int packet_size = ftdi->max_packet_size;
1612 int actual_length = 1;
1613
1614 if (ftdi == NULL || ftdi->usb_dev == NULL)
1615 ftdi_error_return(-666, "USB device unavailable");
1616
1617 // Packet size sanity check (avoid division by zero)
1618 if (packet_size == 0)
1619 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1620
1621 // everything we want is still in the readbuffer?
1622 if (size <= ftdi->readbuffer_remaining)
1623 {
1624 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1625
1626 // Fix offsets
1627 ftdi->readbuffer_remaining -= size;
1628 ftdi->readbuffer_offset += size;
1629
1630 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1631
1632 return size;
1633 }
1634 // something still in the readbuffer, but not enough to satisfy 'size'?
1635 if (ftdi->readbuffer_remaining != 0)
1636 {
1637 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1638
1639 // Fix offset
1640 offset += ftdi->readbuffer_remaining;
1641 }
1642 // do the actual USB read
1643 while (offset < size && actual_length > 0)
1644 {
1645 ftdi->readbuffer_remaining = 0;
1646 ftdi->readbuffer_offset = 0;
1647 /* returns how much received */
1648 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1649 if (ret < 0)
1650 ftdi_error_return(ret, "usb bulk read failed");
1651
1652 if (actual_length > 2)
1653 {
1654 // skip FTDI status bytes.
1655 // Maybe stored in the future to enable modem use
1656 num_of_chunks = actual_length / packet_size;
1657 chunk_remains = actual_length % packet_size;
1658 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1659
1660 ftdi->readbuffer_offset += 2;
1661 actual_length -= 2;
1662
1663 if (actual_length > packet_size - 2)
1664 {
1665 for (i = 1; i < num_of_chunks; i++)
1666 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1667 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1668 packet_size - 2);
1669 if (chunk_remains > 2)
1670 {
1671 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1672 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1673 chunk_remains-2);
1674 actual_length -= 2*num_of_chunks;
1675 }
1676 else
1677 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1678 }
1679 }
1680 else if (actual_length <= 2)
1681 {
1682 // no more data to read?
1683 return offset;
1684 }
1685 if (actual_length > 0)
1686 {
1687 // data still fits in buf?
1688 if (offset+actual_length <= size)
1689 {
1690 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1691 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1692 offset += actual_length;
1693
1694 /* Did we read exactly the right amount of bytes? */
1695 if (offset == size)
1696 //printf("read_data exact rem %d offset %d\n",
1697 //ftdi->readbuffer_remaining, offset);
1698 return offset;
1699 }
1700 else
1701 {
1702 // only copy part of the data or size <= readbuffer_chunksize
1703 int part_size = size-offset;
1704 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1705
1706 ftdi->readbuffer_offset += part_size;
1707 ftdi->readbuffer_remaining = actual_length-part_size;
1708 offset += part_size;
1709
1710 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1711 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1712
1713 return offset;
1714 }
1715 }
1716 }
1717 // never reached
1718 return -127;
1719}
1720
1721/**
1722 Configure read buffer chunk size.
1723 Default is 4096.
1724
1725 Automatically reallocates the buffer.
1726
1727 \param ftdi pointer to ftdi_context
1728 \param chunksize Chunk size
1729
1730 \retval 0: all fine
1731 \retval -1: ftdi context invalid
1732*/
1733int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1734{
1735 unsigned char *new_buf;
1736
1737 if (ftdi == NULL)
1738 ftdi_error_return(-1, "ftdi context invalid");
1739
1740 // Invalidate all remaining data
1741 ftdi->readbuffer_offset = 0;
1742 ftdi->readbuffer_remaining = 0;
1743#ifdef __linux__
1744 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1745 which is defined in libusb-1.0. Otherwise, each USB read request will
1746 be divided into multiple URBs. This will cause issues on Linux kernel
1747 older than 2.6.32. */
1748 if (chunksize > 16384)
1749 chunksize = 16384;
1750#endif
1751
1752 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1753 ftdi_error_return(-1, "out of memory for readbuffer");
1754
1755 ftdi->readbuffer = new_buf;
1756 ftdi->readbuffer_chunksize = chunksize;
1757
1758 return 0;
1759}
1760
1761/**
1762 Get read buffer chunk size.
1763
1764 \param ftdi pointer to ftdi_context
1765 \param chunksize Pointer to store chunk size in
1766
1767 \retval 0: all fine
1768 \retval -1: FTDI context invalid
1769*/
1770int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1771{
1772 if (ftdi == NULL)
1773 ftdi_error_return(-1, "FTDI context invalid");
1774
1775 *chunksize = ftdi->readbuffer_chunksize;
1776 return 0;
1777}
1778
1779
1780/**
1781 Enable bitbang mode.
1782
1783 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1784
1785 \param ftdi pointer to ftdi_context
1786 \param bitmask Bitmask to configure lines.
1787 HIGH/ON value configures a line as output.
1788
1789 \retval 0: all fine
1790 \retval -1: can't enable bitbang mode
1791 \retval -2: USB device unavailable
1792*/
1793int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1794{
1795 unsigned short usb_val;
1796
1797 if (ftdi == NULL || ftdi->usb_dev == NULL)
1798 ftdi_error_return(-2, "USB device unavailable");
1799
1800 usb_val = bitmask; // low byte: bitmask
1801 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1802 usb_val |= (ftdi->bitbang_mode << 8);
1803
1804 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1805 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1806 NULL, 0, ftdi->usb_write_timeout) < 0)
1807 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1808
1809 ftdi->bitbang_enabled = 1;
1810 return 0;
1811}
1812
1813/**
1814 Disable bitbang mode.
1815
1816 \param ftdi pointer to ftdi_context
1817
1818 \retval 0: all fine
1819 \retval -1: can't disable bitbang mode
1820 \retval -2: USB device unavailable
1821*/
1822int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1823{
1824 if (ftdi == NULL || ftdi->usb_dev == NULL)
1825 ftdi_error_return(-2, "USB device unavailable");
1826
1827 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1828 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1829
1830 ftdi->bitbang_enabled = 0;
1831 return 0;
1832}
1833
1834/**
1835 Enable/disable bitbang modes.
1836
1837 \param ftdi pointer to ftdi_context
1838 \param bitmask Bitmask to configure lines.
1839 HIGH/ON value configures a line as output.
1840 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1841
1842 \retval 0: all fine
1843 \retval -1: can't enable bitbang mode
1844 \retval -2: USB device unavailable
1845*/
1846int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1847{
1848 unsigned short usb_val;
1849
1850 if (ftdi == NULL || ftdi->usb_dev == NULL)
1851 ftdi_error_return(-2, "USB device unavailable");
1852
1853 usb_val = bitmask; // low byte: bitmask
1854 usb_val |= (mode << 8);
1855 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1856 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1857
1858 ftdi->bitbang_mode = mode;
1859 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1860 return 0;
1861}
1862
1863/**
1864 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1865
1866 \param ftdi pointer to ftdi_context
1867 \param pins Pointer to store pins into
1868
1869 \retval 0: all fine
1870 \retval -1: read pins failed
1871 \retval -2: USB device unavailable
1872*/
1873int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1874{
1875 if (ftdi == NULL || ftdi->usb_dev == NULL)
1876 ftdi_error_return(-2, "USB device unavailable");
1877
1878 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1879 ftdi_error_return(-1, "read pins failed");
1880
1881 return 0;
1882}
1883
1884/**
1885 Set latency timer
1886
1887 The FTDI chip keeps data in the internal buffer for a specific
1888 amount of time if the buffer is not full yet to decrease
1889 load on the usb bus.
1890
1891 \param ftdi pointer to ftdi_context
1892 \param latency Value between 1 and 255
1893
1894 \retval 0: all fine
1895 \retval -1: latency out of range
1896 \retval -2: unable to set latency timer
1897 \retval -3: USB device unavailable
1898*/
1899int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1900{
1901 unsigned short usb_val;
1902
1903 if (latency < 1)
1904 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1905
1906 if (ftdi == NULL || ftdi->usb_dev == NULL)
1907 ftdi_error_return(-3, "USB device unavailable");
1908
1909 usb_val = latency;
1910 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1911 ftdi_error_return(-2, "unable to set latency timer");
1912
1913 return 0;
1914}
1915
1916/**
1917 Get latency timer
1918
1919 \param ftdi pointer to ftdi_context
1920 \param latency Pointer to store latency value in
1921
1922 \retval 0: all fine
1923 \retval -1: unable to get latency timer
1924 \retval -2: USB device unavailable
1925*/
1926int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1927{
1928 unsigned short usb_val;
1929
1930 if (ftdi == NULL || ftdi->usb_dev == NULL)
1931 ftdi_error_return(-2, "USB device unavailable");
1932
1933 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1934 ftdi_error_return(-1, "reading latency timer failed");
1935
1936 *latency = (unsigned char)usb_val;
1937 return 0;
1938}
1939
1940/**
1941 Poll modem status information
1942
1943 This function allows the retrieve the two status bytes of the device.
1944 The device sends these bytes also as a header for each read access
1945 where they are discarded by ftdi_read_data(). The chip generates
1946 the two stripped status bytes in the absence of data every 40 ms.
1947
1948 Layout of the first byte:
1949 - B0..B3 - must be 0
1950 - B4 Clear to send (CTS)
1951 0 = inactive
1952 1 = active
1953 - B5 Data set ready (DTS)
1954 0 = inactive
1955 1 = active
1956 - B6 Ring indicator (RI)
1957 0 = inactive
1958 1 = active
1959 - B7 Receive line signal detect (RLSD)
1960 0 = inactive
1961 1 = active
1962
1963 Layout of the second byte:
1964 - B0 Data ready (DR)
1965 - B1 Overrun error (OE)
1966 - B2 Parity error (PE)
1967 - B3 Framing error (FE)
1968 - B4 Break interrupt (BI)
1969 - B5 Transmitter holding register (THRE)
1970 - B6 Transmitter empty (TEMT)
1971 - B7 Error in RCVR FIFO
1972
1973 \param ftdi pointer to ftdi_context
1974 \param status Pointer to store status information in. Must be two bytes.
1975
1976 \retval 0: all fine
1977 \retval -1: unable to retrieve status information
1978 \retval -2: USB device unavailable
1979*/
1980int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1981{
1982 char usb_val[2];
1983
1984 if (ftdi == NULL || ftdi->usb_dev == NULL)
1985 ftdi_error_return(-2, "USB device unavailable");
1986
1987 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1988 ftdi_error_return(-1, "getting modem status failed");
1989
1990 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1991
1992 return 0;
1993}
1994
1995/**
1996 Set flowcontrol for ftdi chip
1997
1998 \param ftdi pointer to ftdi_context
1999 \param flowctrl flow control to use. should be
2000 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2001
2002 \retval 0: all fine
2003 \retval -1: set flow control failed
2004 \retval -2: USB device unavailable
2005*/
2006int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2007{
2008 if (ftdi == NULL || ftdi->usb_dev == NULL)
2009 ftdi_error_return(-2, "USB device unavailable");
2010
2011 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2012 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2013 NULL, 0, ftdi->usb_write_timeout) < 0)
2014 ftdi_error_return(-1, "set flow control failed");
2015
2016 return 0;
2017}
2018
2019/**
2020 Set dtr line
2021
2022 \param ftdi pointer to ftdi_context
2023 \param state state to set line to (1 or 0)
2024
2025 \retval 0: all fine
2026 \retval -1: set dtr failed
2027 \retval -2: USB device unavailable
2028*/
2029int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2030{
2031 unsigned short usb_val;
2032
2033 if (ftdi == NULL || ftdi->usb_dev == NULL)
2034 ftdi_error_return(-2, "USB device unavailable");
2035
2036 if (state)
2037 usb_val = SIO_SET_DTR_HIGH;
2038 else
2039 usb_val = SIO_SET_DTR_LOW;
2040
2041 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2042 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2043 NULL, 0, ftdi->usb_write_timeout) < 0)
2044 ftdi_error_return(-1, "set dtr failed");
2045
2046 return 0;
2047}
2048
2049/**
2050 Set rts line
2051
2052 \param ftdi pointer to ftdi_context
2053 \param state state to set line to (1 or 0)
2054
2055 \retval 0: all fine
2056 \retval -1: set rts failed
2057 \retval -2: USB device unavailable
2058*/
2059int ftdi_setrts(struct ftdi_context *ftdi, int state)
2060{
2061 unsigned short usb_val;
2062
2063 if (ftdi == NULL || ftdi->usb_dev == NULL)
2064 ftdi_error_return(-2, "USB device unavailable");
2065
2066 if (state)
2067 usb_val = SIO_SET_RTS_HIGH;
2068 else
2069 usb_val = SIO_SET_RTS_LOW;
2070
2071 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2072 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2073 NULL, 0, ftdi->usb_write_timeout) < 0)
2074 ftdi_error_return(-1, "set of rts failed");
2075
2076 return 0;
2077}
2078
2079/**
2080 Set dtr and rts line in one pass
2081
2082 \param ftdi pointer to ftdi_context
2083 \param dtr DTR state to set line to (1 or 0)
2084 \param rts RTS state to set line to (1 or 0)
2085
2086 \retval 0: all fine
2087 \retval -1: set dtr/rts failed
2088 \retval -2: USB device unavailable
2089 */
2090int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2091{
2092 unsigned short usb_val;
2093
2094 if (ftdi == NULL || ftdi->usb_dev == NULL)
2095 ftdi_error_return(-2, "USB device unavailable");
2096
2097 if (dtr)
2098 usb_val = SIO_SET_DTR_HIGH;
2099 else
2100 usb_val = SIO_SET_DTR_LOW;
2101
2102 if (rts)
2103 usb_val |= SIO_SET_RTS_HIGH;
2104 else
2105 usb_val |= SIO_SET_RTS_LOW;
2106
2107 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2108 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2109 NULL, 0, ftdi->usb_write_timeout) < 0)
2110 ftdi_error_return(-1, "set of rts/dtr failed");
2111
2112 return 0;
2113}
2114
2115/**
2116 Set the special event character
2117
2118 \param ftdi pointer to ftdi_context
2119 \param eventch Event character
2120 \param enable 0 to disable the event character, non-zero otherwise
2121
2122 \retval 0: all fine
2123 \retval -1: unable to set event character
2124 \retval -2: USB device unavailable
2125*/
2126int ftdi_set_event_char(struct ftdi_context *ftdi,
2127 unsigned char eventch, unsigned char enable)
2128{
2129 unsigned short usb_val;
2130
2131 if (ftdi == NULL || ftdi->usb_dev == NULL)
2132 ftdi_error_return(-2, "USB device unavailable");
2133
2134 usb_val = eventch;
2135 if (enable)
2136 usb_val |= 1 << 8;
2137
2138 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2139 ftdi_error_return(-1, "setting event character failed");
2140
2141 return 0;
2142}
2143
2144/**
2145 Set error character
2146
2147 \param ftdi pointer to ftdi_context
2148 \param errorch Error character
2149 \param enable 0 to disable the error character, non-zero otherwise
2150
2151 \retval 0: all fine
2152 \retval -1: unable to set error character
2153 \retval -2: USB device unavailable
2154*/
2155int ftdi_set_error_char(struct ftdi_context *ftdi,
2156 unsigned char errorch, unsigned char enable)
2157{
2158 unsigned short usb_val;
2159
2160 if (ftdi == NULL || ftdi->usb_dev == NULL)
2161 ftdi_error_return(-2, "USB device unavailable");
2162
2163 usb_val = errorch;
2164 if (enable)
2165 usb_val |= 1 << 8;
2166
2167 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2168 ftdi_error_return(-1, "setting error character failed");
2169
2170 return 0;
2171}
2172
2173/**
2174 Init eeprom with default values.
2175 \param ftdi pointer to ftdi_context
2176 \param manufacturer String to use as Manufacturer
2177 \param product String to use as Product description
2178 \param serial String to use as Serial number description
2179
2180 \retval 0: all fine
2181 \retval -1: No struct ftdi_context
2182 \retval -2: No struct ftdi_eeprom
2183*/
2184int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2185 char * product, char * serial)
2186{
2187 struct ftdi_eeprom *eeprom;
2188
2189 if (ftdi == NULL)
2190 ftdi_error_return(-1, "No struct ftdi_context");
2191
2192 if (ftdi->eeprom == NULL)
2193 ftdi_error_return(-2,"No struct ftdi_eeprom");
2194
2195 eeprom = ftdi->eeprom;
2196 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2197
2198 eeprom->vendor_id = 0x0403;
2199 eeprom->use_serial = USE_SERIAL_NUM;
2200 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2201 (ftdi->type == TYPE_R))
2202 eeprom->product_id = 0x6001;
2203 else if (ftdi->type == TYPE_4232H)
2204 eeprom->product_id = 0x6011;
2205 else if (ftdi->type == TYPE_232H)
2206 eeprom->product_id = 0x6014;
2207 else
2208 eeprom->product_id = 0x6010;
2209 if (ftdi->type == TYPE_AM)
2210 eeprom->usb_version = 0x0101;
2211 else
2212 eeprom->usb_version = 0x0200;
2213 eeprom->max_power = 100;
2214
2215 if (eeprom->manufacturer)
2216 free (eeprom->manufacturer);
2217 eeprom->manufacturer = NULL;
2218 if (manufacturer)
2219 {
2220 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2221 if (eeprom->manufacturer)
2222 strcpy(eeprom->manufacturer, manufacturer);
2223 }
2224
2225 if (eeprom->product)
2226 free (eeprom->product);
2227 eeprom->product = NULL;
2228 if(product)
2229 {
2230 eeprom->product = malloc(strlen(product)+1);
2231 if (eeprom->product)
2232 strcpy(eeprom->product, product);
2233 }
2234
2235 if (eeprom->serial)
2236 free (eeprom->serial);
2237 eeprom->serial = NULL;
2238 if (serial)
2239 {
2240 eeprom->serial = malloc(strlen(serial)+1);
2241 if (eeprom->serial)
2242 strcpy(eeprom->serial, serial);
2243 }
2244
2245
2246 if (ftdi->type == TYPE_R)
2247 {
2248 eeprom->max_power = 90;
2249 eeprom->size = 0x80;
2250 eeprom->cbus_function[0] = CBUS_TXLED;
2251 eeprom->cbus_function[1] = CBUS_RXLED;
2252 eeprom->cbus_function[2] = CBUS_TXDEN;
2253 eeprom->cbus_function[3] = CBUS_PWREN;
2254 eeprom->cbus_function[4] = CBUS_SLEEP;
2255 }
2256 else
2257 {
2258 if(ftdi->type == TYPE_232H)
2259 {
2260 int i;
2261 for (i=0; i<10; i++)
2262 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2263 }
2264 eeprom->size = -1;
2265 }
2266 return 0;
2267}
2268/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2269void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2270{
2271 int i;
2272 for(i=0; i<5;i++)
2273 {
2274 int mode_low, mode_high;
2275 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2276 mode_low = CBUSH_TRISTATE;
2277 else
2278 mode_low = eeprom->cbus_function[2*i];
2279 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2280 mode_high = CBUSH_TRISTATE;
2281 else
2282 mode_high = eeprom->cbus_function[2*i];
2283
2284 output[0x18+i] = mode_high <<4 | mode_low;
2285 }
2286}
2287/**
2288 Build binary buffer from ftdi_eeprom structure.
2289 Output is suitable for ftdi_write_eeprom().
2290
2291 \param ftdi pointer to ftdi_context
2292
2293 \retval >=0: size of eeprom user area in bytes
2294 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2295 \retval -2: Invalid eeprom or ftdi pointer
2296 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2297 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2298 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2299 \retval -6: No connected EEPROM or EEPROM Type unknown
2300*/
2301int ftdi_eeprom_build(struct ftdi_context *ftdi)
2302{
2303 unsigned char i, j, eeprom_size_mask;
2304 unsigned short checksum, value;
2305 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2306 int user_area_size;
2307 struct ftdi_eeprom *eeprom;
2308 unsigned char * output;
2309
2310 if (ftdi == NULL)
2311 ftdi_error_return(-2,"No context");
2312 if (ftdi->eeprom == NULL)
2313 ftdi_error_return(-2,"No eeprom structure");
2314
2315 eeprom= ftdi->eeprom;
2316 output = eeprom->buf;
2317
2318 if (eeprom->chip == -1)
2319 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2320
2321 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2322 eeprom->size = 0x100;
2323 else
2324 eeprom->size = 0x80;
2325
2326 if (eeprom->manufacturer != NULL)
2327 manufacturer_size = strlen(eeprom->manufacturer);
2328 if (eeprom->product != NULL)
2329 product_size = strlen(eeprom->product);
2330 if (eeprom->serial != NULL)
2331 serial_size = strlen(eeprom->serial);
2332
2333 // eeprom size check
2334 switch (ftdi->type)
2335 {
2336 case TYPE_AM:
2337 case TYPE_BM:
2338 user_area_size = 96; // base size for strings (total of 48 characters)
2339 break;
2340 case TYPE_2232C:
2341 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2342 break;
2343 case TYPE_R:
2344 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2345 break;
2346 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2347 case TYPE_4232H:
2348 user_area_size = 86;
2349 break;
2350 default:
2351 user_area_size = 0;
2352 break;
2353 }
2354 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2355
2356 if (user_area_size < 0)
2357 ftdi_error_return(-1,"eeprom size exceeded");
2358
2359 // empty eeprom
2360 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2361
2362 // Bytes and Bits set for all Types
2363
2364 // Addr 02: Vendor ID
2365 output[0x02] = eeprom->vendor_id;
2366 output[0x03] = eeprom->vendor_id >> 8;
2367
2368 // Addr 04: Product ID
2369 output[0x04] = eeprom->product_id;
2370 output[0x05] = eeprom->product_id >> 8;
2371
2372 // Addr 06: Device release number (0400h for BM features)
2373 output[0x06] = 0x00;
2374 switch (ftdi->type)
2375 {
2376 case TYPE_AM:
2377 output[0x07] = 0x02;
2378 break;
2379 case TYPE_BM:
2380 output[0x07] = 0x04;
2381 break;
2382 case TYPE_2232C:
2383 output[0x07] = 0x05;
2384 break;
2385 case TYPE_R:
2386 output[0x07] = 0x06;
2387 break;
2388 case TYPE_2232H:
2389 output[0x07] = 0x07;
2390 break;
2391 case TYPE_4232H:
2392 output[0x07] = 0x08;
2393 break;
2394 case TYPE_232H:
2395 output[0x07] = 0x09;
2396 break;
2397 default:
2398 output[0x07] = 0x00;
2399 }
2400
2401 // Addr 08: Config descriptor
2402 // Bit 7: always 1
2403 // Bit 6: 1 if this device is self powered, 0 if bus powered
2404 // Bit 5: 1 if this device uses remote wakeup
2405 // Bit 4-0: reserved - 0
2406 j = 0x80;
2407 if (eeprom->self_powered == 1)
2408 j |= 0x40;
2409 if (eeprom->remote_wakeup == 1)
2410 j |= 0x20;
2411 output[0x08] = j;
2412
2413 // Addr 09: Max power consumption: max power = value * 2 mA
2414 output[0x09] = eeprom->max_power>>1;
2415
2416 if (ftdi->type != TYPE_AM)
2417 {
2418 // Addr 0A: Chip configuration
2419 // Bit 7: 0 - reserved
2420 // Bit 6: 0 - reserved
2421 // Bit 5: 0 - reserved
2422 // Bit 4: 1 - Change USB version
2423 // Bit 3: 1 - Use the serial number string
2424 // Bit 2: 1 - Enable suspend pull downs for lower power
2425 // Bit 1: 1 - Out EndPoint is Isochronous
2426 // Bit 0: 1 - In EndPoint is Isochronous
2427 //
2428 j = 0;
2429 if (eeprom->in_is_isochronous == 1)
2430 j = j | 1;
2431 if (eeprom->out_is_isochronous == 1)
2432 j = j | 2;
2433 output[0x0A] = j;
2434 }
2435
2436 // Dynamic content
2437 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2438 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2439 // 0xa0 (TYPE_232H)
2440 i = 0;
2441 switch (ftdi->type)
2442 {
2443 case TYPE_232H:
2444 i += 2;
2445 case TYPE_2232H:
2446 case TYPE_4232H:
2447 i += 2;
2448 case TYPE_R:
2449 i += 2;
2450 case TYPE_2232C:
2451 i += 2;
2452 case TYPE_AM:
2453 case TYPE_BM:
2454 i += 0x94;
2455 }
2456 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2457 eeprom_size_mask = eeprom->size -1;
2458
2459 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2460 // Addr 0F: Length of manufacturer string
2461 // Output manufacturer
2462 output[0x0E] = i; // calculate offset
2463 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2464 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2465 for (j = 0; j < manufacturer_size; j++)
2466 {
2467 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2468 output[i & eeprom_size_mask] = 0x00, i++;
2469 }
2470 output[0x0F] = manufacturer_size*2 + 2;
2471
2472 // Addr 10: Offset of the product string + 0x80, calculated later
2473 // Addr 11: Length of product string
2474 output[0x10] = i | 0x80; // calculate offset
2475 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2476 output[i & eeprom_size_mask] = 0x03, i++;
2477 for (j = 0; j < product_size; j++)
2478 {
2479 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2480 output[i & eeprom_size_mask] = 0x00, i++;
2481 }
2482 output[0x11] = product_size*2 + 2;
2483
2484 // Addr 12: Offset of the serial string + 0x80, calculated later
2485 // Addr 13: Length of serial string
2486 output[0x12] = i | 0x80; // calculate offset
2487 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2488 output[i & eeprom_size_mask] = 0x03, i++;
2489 for (j = 0; j < serial_size; j++)
2490 {
2491 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2492 output[i & eeprom_size_mask] = 0x00, i++;
2493 }
2494
2495 // Legacy port name and PnP fields for FT2232 and newer chips
2496 if (ftdi->type > TYPE_BM)
2497 {
2498 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2499 i++;
2500 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2501 i++;
2502 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2503 i++;
2504 }
2505
2506 output[0x13] = serial_size*2 + 2;
2507
2508 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2509 {
2510 if (eeprom->use_serial == USE_SERIAL_NUM )
2511 output[0x0A] |= USE_SERIAL_NUM;
2512 else
2513 output[0x0A] &= ~USE_SERIAL_NUM;
2514 }
2515
2516 /* Bytes and Bits specific to (some) types
2517 Write linear, as this allows easier fixing*/
2518 switch (ftdi->type)
2519 {
2520 case TYPE_AM:
2521 break;
2522 case TYPE_BM:
2523 output[0x0C] = eeprom->usb_version & 0xff;
2524 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2525 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2526 output[0x0A] |= USE_USB_VERSION_BIT;
2527 else
2528 output[0x0A] &= ~USE_USB_VERSION_BIT;
2529
2530 break;
2531 case TYPE_2232C:
2532
2533 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2534 if ( eeprom->channel_a_driver == DRIVER_VCP)
2535 output[0x00] |= DRIVER_VCP;
2536 else
2537 output[0x00] &= ~DRIVER_VCP;
2538
2539 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2540 output[0x00] |= HIGH_CURRENT_DRIVE;
2541 else
2542 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2543
2544 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2545 if ( eeprom->channel_b_driver == DRIVER_VCP)
2546 output[0x01] |= DRIVER_VCP;
2547 else
2548 output[0x01] &= ~DRIVER_VCP;
2549
2550 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2551 output[0x01] |= HIGH_CURRENT_DRIVE;
2552 else
2553 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2554
2555 if (eeprom->in_is_isochronous == 1)
2556 output[0x0A] |= 0x1;
2557 else
2558 output[0x0A] &= ~0x1;
2559 if (eeprom->out_is_isochronous == 1)
2560 output[0x0A] |= 0x2;
2561 else
2562 output[0x0A] &= ~0x2;
2563 if (eeprom->suspend_pull_downs == 1)
2564 output[0x0A] |= 0x4;
2565 else
2566 output[0x0A] &= ~0x4;
2567 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2568 output[0x0A] |= USE_USB_VERSION_BIT;
2569 else
2570 output[0x0A] &= ~USE_USB_VERSION_BIT;
2571
2572 output[0x0C] = eeprom->usb_version & 0xff;
2573 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2574 output[0x14] = eeprom->chip;
2575 break;
2576 case TYPE_R:
2577 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2578 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2579 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2580
2581 if (eeprom->suspend_pull_downs == 1)
2582 output[0x0A] |= 0x4;
2583 else
2584 output[0x0A] &= ~0x4;
2585 output[0x0B] = eeprom->invert;
2586 output[0x0C] = eeprom->usb_version & 0xff;
2587 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2588
2589 if (eeprom->cbus_function[0] > CBUS_BB)
2590 output[0x14] = CBUS_TXLED;
2591 else
2592 output[0x14] = eeprom->cbus_function[0];
2593
2594 if (eeprom->cbus_function[1] > CBUS_BB)
2595 output[0x14] |= CBUS_RXLED<<4;
2596 else
2597 output[0x14] |= eeprom->cbus_function[1]<<4;
2598
2599 if (eeprom->cbus_function[2] > CBUS_BB)
2600 output[0x15] = CBUS_TXDEN;
2601 else
2602 output[0x15] = eeprom->cbus_function[2];
2603
2604 if (eeprom->cbus_function[3] > CBUS_BB)
2605 output[0x15] |= CBUS_PWREN<<4;
2606 else
2607 output[0x15] |= eeprom->cbus_function[3]<<4;
2608
2609 if (eeprom->cbus_function[4] > CBUS_CLK6)
2610 output[0x16] = CBUS_SLEEP;
2611 else
2612 output[0x16] = eeprom->cbus_function[4];
2613 break;
2614 case TYPE_2232H:
2615 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0;
2616 if ( eeprom->channel_a_driver == DRIVER_VCP)
2617 output[0x00] |= DRIVER_VCP;
2618 else
2619 output[0x00] &= ~DRIVER_VCP;
2620
2621 output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0;
2622 if ( eeprom->channel_b_driver == DRIVER_VCP)
2623 output[0x01] |= DRIVER_VCP;
2624 else
2625 output[0x01] &= ~DRIVER_VCP;
2626 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2627 output[0x01] |= SUSPEND_DBUS7_BIT;
2628 else
2629 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2630
2631 if (eeprom->suspend_pull_downs == 1)
2632 output[0x0A] |= 0x4;
2633 else
2634 output[0x0A] &= ~0x4;
2635
2636 if (eeprom->group0_drive > DRIVE_16MA)
2637 output[0x0c] |= DRIVE_16MA;
2638 else
2639 output[0x0c] |= eeprom->group0_drive;
2640 if (eeprom->group0_schmitt == IS_SCHMITT)
2641 output[0x0c] |= IS_SCHMITT;
2642 if (eeprom->group0_slew == SLOW_SLEW)
2643 output[0x0c] |= SLOW_SLEW;
2644
2645 if (eeprom->group1_drive > DRIVE_16MA)
2646 output[0x0c] |= DRIVE_16MA<<4;
2647 else
2648 output[0x0c] |= eeprom->group1_drive<<4;
2649 if (eeprom->group1_schmitt == IS_SCHMITT)
2650 output[0x0c] |= IS_SCHMITT<<4;
2651 if (eeprom->group1_slew == SLOW_SLEW)
2652 output[0x0c] |= SLOW_SLEW<<4;
2653
2654 if (eeprom->group2_drive > DRIVE_16MA)
2655 output[0x0d] |= DRIVE_16MA;
2656 else
2657 output[0x0d] |= eeprom->group2_drive;
2658 if (eeprom->group2_schmitt == IS_SCHMITT)
2659 output[0x0d] |= IS_SCHMITT;
2660 if (eeprom->group2_slew == SLOW_SLEW)
2661 output[0x0d] |= SLOW_SLEW;
2662
2663 if (eeprom->group3_drive > DRIVE_16MA)
2664 output[0x0d] |= DRIVE_16MA<<4;
2665 else
2666 output[0x0d] |= eeprom->group3_drive<<4;
2667 if (eeprom->group3_schmitt == IS_SCHMITT)
2668 output[0x0d] |= IS_SCHMITT<<4;
2669 if (eeprom->group3_slew == SLOW_SLEW)
2670 output[0x0d] |= SLOW_SLEW<<4;
2671
2672 output[0x18] = eeprom->chip;
2673
2674 break;
2675 case TYPE_4232H:
2676 output[0x18] = eeprom->chip;
2677 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2678 break;
2679 case TYPE_232H:
2680 output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0xf):0;
2681 if ( eeprom->channel_a_driver == DRIVER_VCP)
2682 output[0x00] |= DRIVER_VCPH;
2683 else
2684 output[0x00] &= ~DRIVER_VCPH;
2685 if (eeprom->powersave)
2686 output[0x01] |= POWER_SAVE_DISABLE_H;
2687 else
2688 output[0x01] &= ~POWER_SAVE_DISABLE_H;
2689 if (eeprom->clock_polarity)
2690 output[0x01] |= FT1284_CLK_IDLE_STATE;
2691 else
2692 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
2693 if (eeprom->data_order)
2694 output[0x01] |= FT1284_DATA_LSB;
2695 else
2696 output[0x01] &= ~FT1284_DATA_LSB;
2697 if (eeprom->flow_control)
2698 output[0x01] |= FT1284_FLOW_CONTROL;
2699 else
2700 output[0x01] &= ~FT1284_FLOW_CONTROL;
2701 if (eeprom->group0_drive > DRIVE_16MA)
2702 output[0x0c] |= DRIVE_16MA;
2703 else
2704 output[0x0c] |= eeprom->group0_drive;
2705 if (eeprom->group0_schmitt == IS_SCHMITT)
2706 output[0x0c] |= IS_SCHMITT;
2707 if (eeprom->group0_slew == SLOW_SLEW)
2708 output[0x0c] |= SLOW_SLEW;
2709
2710 if (eeprom->group1_drive > DRIVE_16MA)
2711 output[0x0d] |= DRIVE_16MA;
2712 else
2713 output[0x0d] |= eeprom->group1_drive;
2714 if (eeprom->group1_schmitt == IS_SCHMITT)
2715 output[0x0d] |= IS_SCHMITT;
2716 if (eeprom->group1_slew == SLOW_SLEW)
2717 output[0x0d] |= SLOW_SLEW;
2718
2719 set_ft232h_cbus(eeprom, output);
2720
2721 output[0x1e] = eeprom->chip;
2722 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
2723 break;
2724
2725 }
2726
2727 // calculate checksum
2728 checksum = 0xAAAA;
2729
2730 for (i = 0; i < eeprom->size/2-1; i++)
2731 {
2732 value = output[i*2];
2733 value += output[(i*2)+1] << 8;
2734
2735 checksum = value^checksum;
2736 checksum = (checksum << 1) | (checksum >> 15);
2737 }
2738
2739 output[eeprom->size-2] = checksum;
2740 output[eeprom->size-1] = checksum >> 8;
2741
2742 return user_area_size;
2743}
2744/* FTD2XX doesn't allow to set multiple bits in the interface mode bitfield*/
2745unsigned char bit2type(unsigned char bits)
2746{
2747 switch (bits)
2748 {
2749 case 0: return 0;
2750 case 1: return 1;
2751 case 2: return 2;
2752 case 4: return 3;
2753 case 8: return 4;
2754 default:
2755 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
2756 bits);
2757 }
2758 return 0;
2759}
2760
2761/**
2762 Decode binary EEPROM image into an ftdi_eeprom structure.
2763
2764 \param ftdi pointer to ftdi_context
2765 \param verbose Decode EEPROM on stdout
2766
2767 \retval 0: all fine
2768 \retval -1: something went wrong
2769
2770 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2771 FIXME: Strings are malloc'ed here and should be freed somewhere
2772*/
2773int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2774{
2775 unsigned char i, j;
2776 unsigned short checksum, eeprom_checksum, value;
2777 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2778 int eeprom_size;
2779 struct ftdi_eeprom *eeprom;
2780 unsigned char *buf = ftdi->eeprom->buf;
2781 int release;
2782
2783 if (ftdi == NULL)
2784 ftdi_error_return(-1,"No context");
2785 if (ftdi->eeprom == NULL)
2786 ftdi_error_return(-1,"No eeprom structure");
2787
2788 eeprom = ftdi->eeprom;
2789 eeprom_size = eeprom->size;
2790
2791 // Addr 02: Vendor ID
2792 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2793
2794 // Addr 04: Product ID
2795 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2796
2797 release = buf[0x06] + (buf[0x07]<<8);
2798
2799 // Addr 08: Config descriptor
2800 // Bit 7: always 1
2801 // Bit 6: 1 if this device is self powered, 0 if bus powered
2802 // Bit 5: 1 if this device uses remote wakeup
2803 eeprom->self_powered = buf[0x08] & 0x40;
2804 eeprom->remote_wakeup = buf[0x08] & 0x20;
2805
2806 // Addr 09: Max power consumption: max power = value * 2 mA
2807 eeprom->max_power = buf[0x09];
2808
2809 // Addr 0A: Chip configuration
2810 // Bit 7: 0 - reserved
2811 // Bit 6: 0 - reserved
2812 // Bit 5: 0 - reserved
2813 // Bit 4: 1 - Change USB version on BM and 2232C
2814 // Bit 3: 1 - Use the serial number string
2815 // Bit 2: 1 - Enable suspend pull downs for lower power
2816 // Bit 1: 1 - Out EndPoint is Isochronous
2817 // Bit 0: 1 - In EndPoint is Isochronous
2818 //
2819 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2820 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2821 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2822 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2823 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2824
2825 // Addr 0C: USB version low byte when 0x0A
2826 // Addr 0D: USB version high byte when 0x0A
2827 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2828
2829 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2830 // Addr 0F: Length of manufacturer string
2831 manufacturer_size = buf[0x0F]/2;
2832 if (eeprom->manufacturer)
2833 free(eeprom->manufacturer);
2834 if (manufacturer_size > 0)
2835 {
2836 eeprom->manufacturer = malloc(manufacturer_size);
2837 if (eeprom->manufacturer)
2838 {
2839 // Decode manufacturer
2840 i = buf[0x0E] & (eeprom_size -1); // offset
2841 for (j=0;j<manufacturer_size-1;j++)
2842 {
2843 eeprom->manufacturer[j] = buf[2*j+i+2];
2844 }
2845 eeprom->manufacturer[j] = '\0';
2846 }
2847 }
2848 else eeprom->manufacturer = NULL;
2849
2850 // Addr 10: Offset of the product string + 0x80, calculated later
2851 // Addr 11: Length of product string
2852 if (eeprom->product)
2853 free(eeprom->product);
2854 product_size = buf[0x11]/2;
2855 if (product_size > 0)
2856 {
2857 eeprom->product = malloc(product_size);
2858 if (eeprom->product)
2859 {
2860 // Decode product name
2861 i = buf[0x10] & (eeprom_size -1); // offset
2862 for (j=0;j<product_size-1;j++)
2863 {
2864 eeprom->product[j] = buf[2*j+i+2];
2865 }
2866 eeprom->product[j] = '\0';
2867 }
2868 }
2869 else eeprom->product = NULL;
2870
2871 // Addr 12: Offset of the serial string + 0x80, calculated later
2872 // Addr 13: Length of serial string
2873 if (eeprom->serial)
2874 free(eeprom->serial);
2875 serial_size = buf[0x13]/2;
2876 if (serial_size > 0)
2877 {
2878 eeprom->serial = malloc(serial_size);
2879 if (eeprom->serial)
2880 {
2881 // Decode serial
2882 i = buf[0x12] & (eeprom_size -1); // offset
2883 for (j=0;j<serial_size-1;j++)
2884 {
2885 eeprom->serial[j] = buf[2*j+i+2];
2886 }
2887 eeprom->serial[j] = '\0';
2888 }
2889 }
2890 else eeprom->serial = NULL;
2891
2892 // verify checksum
2893 checksum = 0xAAAA;
2894
2895 for (i = 0; i < eeprom_size/2-1; i++)
2896 {
2897 value = buf[i*2];
2898 value += buf[(i*2)+1] << 8;
2899
2900 checksum = value^checksum;
2901 checksum = (checksum << 1) | (checksum >> 15);
2902 }
2903
2904 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2905
2906 if (eeprom_checksum != checksum)
2907 {
2908 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2909 ftdi_error_return(-1,"EEPROM checksum error");
2910 }
2911
2912 eeprom->channel_a_type = 0;
2913 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2914 {
2915 eeprom->chip = -1;
2916 }
2917 else if (ftdi->type == TYPE_2232C)
2918 {
2919 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2920 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2921 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2922 eeprom->channel_b_type = buf[0x01] & 0x7;
2923 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2924 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2925 eeprom->chip = buf[0x14];
2926 }
2927 else if (ftdi->type == TYPE_R)
2928 {
2929 /* TYPE_R flags D2XX, not VCP as all others*/
2930 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2931 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2932 if ( (buf[0x01]&0x40) != 0x40)
2933 fprintf(stderr,
2934 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2935 " If this happened with the\n"
2936 " EEPROM programmed by FTDI tools, please report "
2937 "to libftdi@developer.intra2net.com\n");
2938
2939 eeprom->chip = buf[0x16];
2940 // Addr 0B: Invert data lines
2941 // Works only on FT232R, not FT245R, but no way to distinguish
2942 eeprom->invert = buf[0x0B];
2943 // Addr 14: CBUS function: CBUS0, CBUS1
2944 // Addr 15: CBUS function: CBUS2, CBUS3
2945 // Addr 16: CBUS function: CBUS5
2946 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2947 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2948 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2949 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2950 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2951 }
2952 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2953 {
2954 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
2955 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2956 eeprom->channel_b_type = buf[0x01] & 0x7;
2957 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2958
2959 if (ftdi->type == TYPE_2232H)
2960 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2961
2962 eeprom->chip = buf[0x18];
2963 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2964 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2965 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2966 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2967 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2968 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2969 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2970 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2971 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2972 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2973 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2974 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2975 }
2976 else if (ftdi->type == TYPE_232H)
2977 {
2978 int i;
2979
2980 eeprom->channel_a_type = buf[0x00] & 0xf;
2981 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
2982 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
2983 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
2984 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
2985 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
2986 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2987 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2988 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2989 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
2990 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
2991 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
2992
2993 for(i=0; i<5; i++)
2994 {
2995 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
2996 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
2997 }
2998 eeprom->chip = buf[0x1e];
2999 /*FIXME: Decipher more values*/
3000 }
3001
3002 if (verbose)
3003 {
3004 char *channel_mode[] = {"UART","245","CPU", "OPTO", "FT1284"};
3005 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3006 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3007 fprintf(stdout, "Release: 0x%04x\n",release);
3008
3009 if (eeprom->self_powered)
3010 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3011 else
3012 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
3013 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3014 if (eeprom->manufacturer)
3015 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3016 if (eeprom->product)
3017 fprintf(stdout, "Product: %s\n",eeprom->product);
3018 if (eeprom->serial)
3019 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3020 fprintf(stdout, "Checksum : %04x\n", checksum);
3021 if (ftdi->type == TYPE_R)
3022 fprintf(stdout, "Internal EEPROM\n");
3023 else if (eeprom->chip >= 0x46)
3024 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3025 if (eeprom->suspend_dbus7)
3026 fprintf(stdout, "Suspend on DBUS7\n");
3027 if (eeprom->suspend_pull_downs)
3028 fprintf(stdout, "Pull IO pins low during suspend\n");
3029 if(eeprom->powersave)
3030 {
3031 if(ftdi->type >= TYPE_232H)
3032 fprintf(stdout,"Enter low power state on ACBUS7\n");
3033 }
3034 if (eeprom->remote_wakeup)
3035 fprintf(stdout, "Enable Remote Wake Up\n");
3036 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3037 if (ftdi->type >= TYPE_2232C)
3038 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3039 channel_mode[eeprom->channel_a_type],
3040 (eeprom->channel_a_driver)?" VCP":"",
3041 (eeprom->high_current_a)?" High Current IO":"");
3042 if (ftdi->type >= TYPE_232H)
3043 {
3044 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3045 (eeprom->clock_polarity)?"HIGH":"LOW",
3046 (eeprom->data_order)?"LSB":"MSB",
3047 (eeprom->flow_control)?"":"No ");
3048 }
3049 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R) && (ftdi->type != TYPE_232H))
3050 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3051 channel_mode[eeprom->channel_b_type],
3052 (eeprom->channel_b_driver)?" VCP":"",
3053 (eeprom->high_current_b)?" High Current IO":"");
3054 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3055 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3056 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3057
3058 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3059 {
3060 fprintf(stdout,"%s has %d mA drive%s%s\n",
3061 (ftdi->type == TYPE_2232H)?"AL":"A",
3062 (eeprom->group0_drive+1) *4,
3063 (eeprom->group0_schmitt)?" Schmitt Input":"",
3064 (eeprom->group0_slew)?" Slow Slew":"");
3065 fprintf(stdout,"%s has %d mA drive%s%s\n",
3066 (ftdi->type == TYPE_2232H)?"AH":"B",
3067 (eeprom->group1_drive+1) *4,
3068 (eeprom->group1_schmitt)?" Schmitt Input":"",
3069 (eeprom->group1_slew)?" Slow Slew":"");
3070 fprintf(stdout,"%s has %d mA drive%s%s\n",
3071 (ftdi->type == TYPE_2232H)?"BL":"C",
3072 (eeprom->group2_drive+1) *4,
3073 (eeprom->group2_schmitt)?" Schmitt Input":"",
3074 (eeprom->group2_slew)?" Slow Slew":"");
3075 fprintf(stdout,"%s has %d mA drive%s%s\n",
3076 (ftdi->type == TYPE_2232H)?"BH":"D",
3077 (eeprom->group3_drive+1) *4,
3078 (eeprom->group3_schmitt)?" Schmitt Input":"",
3079 (eeprom->group3_slew)?" Slow Slew":"");
3080 }
3081 else if (ftdi->type == TYPE_232H)
3082 {
3083 int i;
3084 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3085 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3086 "CLK30","CLK15","CLK7_5"
3087 };
3088 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3089 (eeprom->group0_drive+1) *4,
3090 (eeprom->group0_schmitt)?" Schmitt Input":"",
3091 (eeprom->group0_slew)?" Slow Slew":"");
3092 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3093 (eeprom->group1_drive+1) *4,
3094 (eeprom->group1_schmitt)?" Schmitt Input":"",
3095 (eeprom->group1_slew)?" Slow Slew":"");
3096 for (i=0; i<10; i++)
3097 {
3098 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3099 fprintf(stdout,"C%d Function: %s\n", i,
3100 cbush_mux[eeprom->cbus_function[i]]);
3101 }
3102
3103 }
3104
3105 if (ftdi->type == TYPE_R)
3106 {
3107 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3108 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3109 "IOMODE","BB_WR","BB_RD"
3110 };
3111 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3112
3113 if (eeprom->invert)
3114 {
3115 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
3116 fprintf(stdout,"Inverted bits:");
3117 for (i=0; i<8; i++)
3118 if ((eeprom->invert & (1<<i)) == (1<<i))
3119 fprintf(stdout," %s",r_bits[i]);
3120 fprintf(stdout,"\n");
3121 }
3122 for (i=0; i<5; i++)
3123 {
3124 if (eeprom->cbus_function[i]<CBUS_BB)
3125 fprintf(stdout,"C%d Function: %s\n", i,
3126 cbus_mux[eeprom->cbus_function[i]]);
3127 else
3128 {
3129 if (i < 4)
3130 /* Running MPROG show that C0..3 have fixed function Synchronous
3131 Bit Bang mode */
3132 fprintf(stdout,"C%d BB Function: %s\n", i,
3133 cbus_BB[i]);
3134 else
3135 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3136 }
3137 }
3138 }
3139 }
3140 return 0;
3141}
3142
3143/**
3144 Get a value from the decoded EEPROM structure
3145
3146 \param ftdi pointer to ftdi_context
3147 \param value_name Enum of the value to query
3148 \param value Pointer to store read value
3149
3150 \retval 0: all fine
3151 \retval -1: Value doesn't exist
3152*/
3153int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3154{
3155 switch (value_name)
3156 {
3157 case VENDOR_ID:
3158 *value = ftdi->eeprom->vendor_id;
3159 break;
3160 case PRODUCT_ID:
3161 *value = ftdi->eeprom->product_id;
3162 break;
3163 case SELF_POWERED:
3164 *value = ftdi->eeprom->self_powered;
3165 break;
3166 case REMOTE_WAKEUP:
3167 *value = ftdi->eeprom->remote_wakeup;
3168 break;
3169 case IS_NOT_PNP:
3170 *value = ftdi->eeprom->is_not_pnp;
3171 break;
3172 case SUSPEND_DBUS7:
3173 *value = ftdi->eeprom->suspend_dbus7;
3174 break;
3175 case IN_IS_ISOCHRONOUS:
3176 *value = ftdi->eeprom->in_is_isochronous;
3177 break;
3178 case SUSPEND_PULL_DOWNS:
3179 *value = ftdi->eeprom->suspend_pull_downs;
3180 break;
3181 case USE_SERIAL:
3182 *value = ftdi->eeprom->use_serial;
3183 break;
3184 case USB_VERSION:
3185 *value = ftdi->eeprom->usb_version;
3186 break;
3187 case MAX_POWER:
3188 *value = ftdi->eeprom->max_power;
3189 break;
3190 case CHANNEL_A_TYPE:
3191 *value = ftdi->eeprom->channel_a_type;
3192 break;
3193 case CHANNEL_B_TYPE:
3194 *value = ftdi->eeprom->channel_b_type;
3195 break;
3196 case CHANNEL_A_DRIVER:
3197 *value = ftdi->eeprom->channel_a_driver;
3198 break;
3199 case CHANNEL_B_DRIVER:
3200 *value = ftdi->eeprom->channel_b_driver;
3201 break;
3202 case CBUS_FUNCTION_0:
3203 *value = ftdi->eeprom->cbus_function[0];
3204 break;
3205 case CBUS_FUNCTION_1:
3206 *value = ftdi->eeprom->cbus_function[1];
3207 break;
3208 case CBUS_FUNCTION_2:
3209 *value = ftdi->eeprom->cbus_function[2];
3210 break;
3211 case CBUS_FUNCTION_3:
3212 *value = ftdi->eeprom->cbus_function[3];
3213 break;
3214 case CBUS_FUNCTION_4:
3215 *value = ftdi->eeprom->cbus_function[4];
3216 break;
3217 case CBUS_FUNCTION_5:
3218 *value = ftdi->eeprom->cbus_function[5];
3219 break;
3220 case CBUS_FUNCTION_6:
3221 *value = ftdi->eeprom->cbus_function[6];
3222 break;
3223 case CBUS_FUNCTION_7:
3224 *value = ftdi->eeprom->cbus_function[7];
3225 break;
3226 case CBUS_FUNCTION_8:
3227 *value = ftdi->eeprom->cbus_function[8];
3228 break;
3229 case CBUS_FUNCTION_9:
3230 *value = ftdi->eeprom->cbus_function[8];
3231 break;
3232 case HIGH_CURRENT:
3233 *value = ftdi->eeprom->high_current;
3234 break;
3235 case HIGH_CURRENT_A:
3236 *value = ftdi->eeprom->high_current_a;
3237 break;
3238 case HIGH_CURRENT_B:
3239 *value = ftdi->eeprom->high_current_b;
3240 break;
3241 case INVERT:
3242 *value = ftdi->eeprom->invert;
3243 break;
3244 case GROUP0_DRIVE:
3245 *value = ftdi->eeprom->group0_drive;
3246 break;
3247 case GROUP0_SCHMITT:
3248 *value = ftdi->eeprom->group0_schmitt;
3249 break;
3250 case GROUP0_SLEW:
3251 *value = ftdi->eeprom->group0_slew;
3252 break;
3253 case GROUP1_DRIVE:
3254 *value = ftdi->eeprom->group1_drive;
3255 break;
3256 case GROUP1_SCHMITT:
3257 *value = ftdi->eeprom->group1_schmitt;
3258 break;
3259 case GROUP1_SLEW:
3260 *value = ftdi->eeprom->group1_slew;
3261 break;
3262 case GROUP2_DRIVE:
3263 *value = ftdi->eeprom->group2_drive;
3264 break;
3265 case GROUP2_SCHMITT:
3266 *value = ftdi->eeprom->group2_schmitt;
3267 break;
3268 case GROUP2_SLEW:
3269 *value = ftdi->eeprom->group2_slew;
3270 break;
3271 case GROUP3_DRIVE:
3272 *value = ftdi->eeprom->group3_drive;
3273 break;
3274 case GROUP3_SCHMITT:
3275 *value = ftdi->eeprom->group3_schmitt;
3276 break;
3277 case GROUP3_SLEW:
3278 *value = ftdi->eeprom->group3_slew;
3279 break;
3280 case POWER_SAVE:
3281 *value = ftdi->eeprom->powersave;
3282 break;
3283 case CLOCK_POLARITY:
3284 *value = ftdi->eeprom->clock_polarity;
3285 break;
3286 case DATA_ORDER:
3287 *value = ftdi->eeprom->data_order;
3288 break;
3289 case FLOW_CONTROL:
3290 *value = ftdi->eeprom->flow_control;
3291 break;
3292 case CHIP_TYPE:
3293 *value = ftdi->eeprom->chip;
3294 break;
3295 case CHIP_SIZE:
3296 *value = ftdi->eeprom->size;
3297 break;
3298 default:
3299 ftdi_error_return(-1, "Request for unknown EEPROM value");
3300 }
3301 return 0;
3302}
3303
3304/**
3305 Set a value in the decoded EEPROM Structure
3306 No parameter checking is performed
3307
3308 \param ftdi pointer to ftdi_context
3309 \param value_name Enum of the value to set
3310 \param value to set
3311
3312 \retval 0: all fine
3313 \retval -1: Value doesn't exist
3314 \retval -2: Value not user settable
3315*/
3316int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3317{
3318 switch (value_name)
3319 {
3320 case VENDOR_ID:
3321 ftdi->eeprom->vendor_id = value;
3322 break;
3323 case PRODUCT_ID:
3324 ftdi->eeprom->product_id = value;
3325 break;
3326 case SELF_POWERED:
3327 ftdi->eeprom->self_powered = value;
3328 break;
3329 case REMOTE_WAKEUP:
3330 ftdi->eeprom->remote_wakeup = value;
3331 break;
3332 case IS_NOT_PNP:
3333 ftdi->eeprom->is_not_pnp = value;
3334 break;
3335 case SUSPEND_DBUS7:
3336 ftdi->eeprom->suspend_dbus7 = value;
3337 break;
3338 case IN_IS_ISOCHRONOUS:
3339 ftdi->eeprom->in_is_isochronous = value;
3340 break;
3341 case SUSPEND_PULL_DOWNS:
3342 ftdi->eeprom->suspend_pull_downs = value;
3343 break;
3344 case USE_SERIAL:
3345 ftdi->eeprom->use_serial = value;
3346 break;
3347 case USB_VERSION:
3348 ftdi->eeprom->usb_version = value;
3349 break;
3350 case MAX_POWER:
3351 ftdi->eeprom->max_power = value;
3352 break;
3353 case CHANNEL_A_TYPE:
3354 ftdi->eeprom->channel_a_type = value;
3355 break;
3356 case CHANNEL_B_TYPE:
3357 ftdi->eeprom->channel_b_type = value;
3358 break;
3359 case CHANNEL_A_DRIVER:
3360 ftdi->eeprom->channel_a_driver = value;
3361 break;
3362 case CHANNEL_B_DRIVER:
3363 ftdi->eeprom->channel_b_driver = value;
3364 break;
3365 case CBUS_FUNCTION_0:
3366 ftdi->eeprom->cbus_function[0] = value;
3367 break;
3368 case CBUS_FUNCTION_1:
3369 ftdi->eeprom->cbus_function[1] = value;
3370 break;
3371 case CBUS_FUNCTION_2:
3372 ftdi->eeprom->cbus_function[2] = value;
3373 break;
3374 case CBUS_FUNCTION_3:
3375 ftdi->eeprom->cbus_function[3] = value;
3376 break;
3377 case CBUS_FUNCTION_4:
3378 ftdi->eeprom->cbus_function[4] = value;
3379 break;
3380 case CBUS_FUNCTION_5:
3381 ftdi->eeprom->cbus_function[5] = value;
3382 break;
3383 case CBUS_FUNCTION_6:
3384 ftdi->eeprom->cbus_function[6] = value;
3385 break;
3386 case CBUS_FUNCTION_7:
3387 ftdi->eeprom->cbus_function[7] = value;
3388 break;
3389 case CBUS_FUNCTION_8:
3390 ftdi->eeprom->cbus_function[8] = value;
3391 break;
3392 case CBUS_FUNCTION_9:
3393 ftdi->eeprom->cbus_function[9] = value;
3394 break;
3395 case HIGH_CURRENT:
3396 ftdi->eeprom->high_current = value;
3397 break;
3398 case HIGH_CURRENT_A:
3399 ftdi->eeprom->high_current_a = value;
3400 break;
3401 case HIGH_CURRENT_B:
3402 ftdi->eeprom->high_current_b = value;
3403 break;
3404 case INVERT:
3405 ftdi->eeprom->invert = value;
3406 break;
3407 case GROUP0_DRIVE:
3408 ftdi->eeprom->group0_drive = value;
3409 break;
3410 case GROUP0_SCHMITT:
3411 ftdi->eeprom->group0_schmitt = value;
3412 break;
3413 case GROUP0_SLEW:
3414 ftdi->eeprom->group0_slew = value;
3415 break;
3416 case GROUP1_DRIVE:
3417 ftdi->eeprom->group1_drive = value;
3418 break;
3419 case GROUP1_SCHMITT:
3420 ftdi->eeprom->group1_schmitt = value;
3421 break;
3422 case GROUP1_SLEW:
3423 ftdi->eeprom->group1_slew = value;
3424 break;
3425 case GROUP2_DRIVE:
3426 ftdi->eeprom->group2_drive = value;
3427 break;
3428 case GROUP2_SCHMITT:
3429 ftdi->eeprom->group2_schmitt = value;
3430 break;
3431 case GROUP2_SLEW:
3432 ftdi->eeprom->group2_slew = value;
3433 break;
3434 case GROUP3_DRIVE:
3435 ftdi->eeprom->group3_drive = value;
3436 break;
3437 case GROUP3_SCHMITT:
3438 ftdi->eeprom->group3_schmitt = value;
3439 break;
3440 case GROUP3_SLEW:
3441 ftdi->eeprom->group3_slew = value;
3442 break;
3443 case CHIP_TYPE:
3444 ftdi->eeprom->chip = value;
3445 break;
3446 case POWER_SAVE:
3447 ftdi->eeprom->powersave = value;
3448 break;
3449 case CLOCK_POLARITY:
3450 ftdi->eeprom->clock_polarity = value;
3451 break;
3452 case DATA_ORDER:
3453 ftdi->eeprom->data_order = value;
3454 break;
3455 case FLOW_CONTROL:
3456 ftdi->eeprom->flow_control = value;
3457 break;
3458 case CHIP_SIZE:
3459 ftdi_error_return(-2, "EEPROM Value can't be changed");
3460 default :
3461 ftdi_error_return(-1, "Request to unknown EEPROM value");
3462 }
3463 return 0;
3464}
3465
3466/** Get the read-only buffer to the binary EEPROM content
3467
3468 \param ftdi pointer to ftdi_context
3469 \param buf buffer to receive EEPROM content
3470 \param size Size of receiving buffer
3471
3472 \retval 0: All fine
3473 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3474 \retval -2: Not enough room to store eeprom
3475*/
3476int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3477{
3478 if (!ftdi || !(ftdi->eeprom))
3479 ftdi_error_return(-1, "No appropriate structure");
3480
3481 if (!buf || size < ftdi->eeprom->size)
3482 ftdi_error_return(-1, "Not enough room to store eeprom");
3483
3484 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3485 if (size > FTDI_MAX_EEPROM_SIZE)
3486 size = FTDI_MAX_EEPROM_SIZE;
3487
3488 memcpy(buf, ftdi->eeprom->buf, size);
3489
3490 return 0;
3491}
3492
3493/**
3494 Read eeprom location
3495
3496 \param ftdi pointer to ftdi_context
3497 \param eeprom_addr Address of eeprom location to be read
3498 \param eeprom_val Pointer to store read eeprom location
3499
3500 \retval 0: all fine
3501 \retval -1: read failed
3502 \retval -2: USB device unavailable
3503*/
3504int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3505{
3506 if (ftdi == NULL || ftdi->usb_dev == NULL)
3507 ftdi_error_return(-2, "USB device unavailable");
3508
3509 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3510 ftdi_error_return(-1, "reading eeprom failed");
3511
3512 return 0;
3513}
3514
3515/**
3516 Read eeprom
3517
3518 \param ftdi pointer to ftdi_context
3519
3520 \retval 0: all fine
3521 \retval -1: read failed
3522 \retval -2: USB device unavailable
3523*/
3524int ftdi_read_eeprom(struct ftdi_context *ftdi)
3525{
3526 int i;
3527 unsigned char *buf;
3528
3529 if (ftdi == NULL || ftdi->usb_dev == NULL)
3530 ftdi_error_return(-2, "USB device unavailable");
3531 buf = ftdi->eeprom->buf;
3532
3533 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3534 {
3535 if (libusb_control_transfer(
3536 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3537 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3538 ftdi_error_return(-1, "reading eeprom failed");
3539 }
3540
3541 if (ftdi->type == TYPE_R)
3542 ftdi->eeprom->size = 0x80;
3543 /* Guesses size of eeprom by comparing halves
3544 - will not work with blank eeprom */
3545 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3546 ftdi->eeprom->size = -1;
3547 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3548 ftdi->eeprom->size = 0x80;
3549 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3550 ftdi->eeprom->size = 0x40;
3551 else
3552 ftdi->eeprom->size = 0x100;
3553 return 0;
3554}
3555
3556/*
3557 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3558 Function is only used internally
3559 \internal
3560*/
3561static unsigned char ftdi_read_chipid_shift(unsigned char value)
3562{
3563 return ((value & 1) << 1) |
3564 ((value & 2) << 5) |
3565 ((value & 4) >> 2) |
3566 ((value & 8) << 4) |
3567 ((value & 16) >> 1) |
3568 ((value & 32) >> 1) |
3569 ((value & 64) >> 4) |
3570 ((value & 128) >> 2);
3571}
3572
3573/**
3574 Read the FTDIChip-ID from R-type devices
3575
3576 \param ftdi pointer to ftdi_context
3577 \param chipid Pointer to store FTDIChip-ID
3578
3579 \retval 0: all fine
3580 \retval -1: read failed
3581 \retval -2: USB device unavailable
3582*/
3583int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3584{
3585 unsigned int a = 0, b = 0;
3586
3587 if (ftdi == NULL || ftdi->usb_dev == NULL)
3588 ftdi_error_return(-2, "USB device unavailable");
3589
3590 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3591 {
3592 a = a << 8 | a >> 8;
3593 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3594 {
3595 b = b << 8 | b >> 8;
3596 a = (a << 16) | (b & 0xFFFF);
3597 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3598 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3599 *chipid = a ^ 0xa5f0f7d1;
3600 return 0;
3601 }
3602 }
3603
3604 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3605}
3606
3607/**
3608 Write eeprom location
3609
3610 \param ftdi pointer to ftdi_context
3611 \param eeprom_addr Address of eeprom location to be written
3612 \param eeprom_val Value to be written
3613
3614 \retval 0: all fine
3615 \retval -1: write failed
3616 \retval -2: USB device unavailable
3617 \retval -3: Invalid access to checksum protected area below 0x80
3618 \retval -4: Device can't access unprotected area
3619 \retval -5: Reading chip type failed
3620*/
3621int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3622 unsigned short eeprom_val)
3623{
3624 int chip_type_location;
3625 unsigned short chip_type;
3626
3627 if (ftdi == NULL || ftdi->usb_dev == NULL)
3628 ftdi_error_return(-2, "USB device unavailable");
3629
3630 if (eeprom_addr <0x80)
3631 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3632
3633
3634 switch (ftdi->type)
3635 {
3636 case TYPE_BM:
3637 case TYPE_2232C:
3638 chip_type_location = 0x14;
3639 break;
3640 case TYPE_2232H:
3641 case TYPE_4232H:
3642 chip_type_location = 0x18;
3643 break;
3644 case TYPE_232H:
3645 chip_type_location = 0x1e;
3646 break;
3647 default:
3648 ftdi_error_return(-4, "Device can't access unprotected area");
3649 }
3650
3651 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3652 ftdi_error_return(-5, "Reading failed failed");
3653 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3654 if ((chip_type & 0xff) != 0x66)
3655 {
3656 ftdi_error_return(-6, "EEPROM is not of 93x66");
3657 }
3658
3659 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3660 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3661 NULL, 0, ftdi->usb_write_timeout) != 0)
3662 ftdi_error_return(-1, "unable to write eeprom");
3663
3664 return 0;
3665}
3666
3667/**
3668 Write eeprom
3669
3670 \param ftdi pointer to ftdi_context
3671
3672 \retval 0: all fine
3673 \retval -1: read failed
3674 \retval -2: USB device unavailable
3675*/
3676int ftdi_write_eeprom(struct ftdi_context *ftdi)
3677{
3678 unsigned short usb_val, status;
3679 int i, ret;
3680 unsigned char *eeprom;
3681
3682 if (ftdi == NULL || ftdi->usb_dev == NULL)
3683 ftdi_error_return(-2, "USB device unavailable");
3684 eeprom = ftdi->eeprom->buf;
3685
3686 /* These commands were traced while running MProg */
3687 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3688 return ret;
3689 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3690 return ret;
3691 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3692 return ret;
3693
3694 for (i = 0; i < ftdi->eeprom->size/2; i++)
3695 {
3696 usb_val = eeprom[i*2];
3697 usb_val += eeprom[(i*2)+1] << 8;
3698 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3699 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3700 NULL, 0, ftdi->usb_write_timeout) < 0)
3701 ftdi_error_return(-1, "unable to write eeprom");
3702 }
3703
3704 return 0;
3705}
3706
3707/**
3708 Erase eeprom
3709
3710 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3711
3712 \param ftdi pointer to ftdi_context
3713
3714 \retval 0: all fine
3715 \retval -1: erase failed
3716 \retval -2: USB device unavailable
3717 \retval -3: Writing magic failed
3718 \retval -4: Read EEPROM failed
3719 \retval -5: Unexpected EEPROM value
3720*/
3721#define MAGIC 0x55aa
3722int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3723{
3724 unsigned short eeprom_value;
3725 if (ftdi == NULL || ftdi->usb_dev == NULL)
3726 ftdi_error_return(-2, "USB device unavailable");
3727
3728 if (ftdi->type == TYPE_R)
3729 {
3730 ftdi->eeprom->chip = 0;
3731 return 0;
3732 }
3733
3734 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3735 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3736 ftdi_error_return(-1, "unable to erase eeprom");
3737
3738
3739 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3740 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3741 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3742 Chip is 93x66 if magic is only read at word position 0xc0*/
3743 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3744 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3745 NULL, 0, ftdi->usb_write_timeout) != 0)
3746 ftdi_error_return(-3, "Writing magic failed");
3747 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3748 ftdi_error_return(-4, "Reading failed failed");
3749 if (eeprom_value == MAGIC)
3750 {
3751 ftdi->eeprom->chip = 0x46;
3752 }
3753 else
3754 {
3755 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3756 ftdi_error_return(-4, "Reading failed failed");
3757 if (eeprom_value == MAGIC)
3758 ftdi->eeprom->chip = 0x56;
3759 else
3760 {
3761 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3762 ftdi_error_return(-4, "Reading failed failed");
3763 if (eeprom_value == MAGIC)
3764 ftdi->eeprom->chip = 0x66;
3765 else
3766 {
3767 ftdi->eeprom->chip = -1;
3768 }
3769 }
3770 }
3771 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3772 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3773 ftdi_error_return(-1, "unable to erase eeprom");
3774 return 0;
3775}
3776
3777/**
3778 Get string representation for last error code
3779
3780 \param ftdi pointer to ftdi_context
3781
3782 \retval Pointer to error string
3783*/
3784char *ftdi_get_error_string (struct ftdi_context *ftdi)
3785{
3786 if (ftdi == NULL)
3787 return "";
3788
3789 return ftdi->error_str;
3790}
3791
3792/* @} end of doxygen libftdi group */