fixed EEPROM user-area space checks for FT232R and FT245R chips in ftdi_eeprom_build()
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2014 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi_i.h"
38#include "ftdi.h"
39#include "ftdi_version_i.h"
40
41#define ftdi_error_return(code, str) do { \
42 if ( ftdi ) \
43 ftdi->error_str = str; \
44 else \
45 fprintf(stderr, str); \
46 return code; \
47 } while(0);
48
49#define ftdi_error_return_free_device_list(code, str, devs) do { \
50 libusb_free_device_list(devs,1); \
51 ftdi->error_str = str; \
52 return code; \
53 } while(0);
54
55
56/**
57 Internal function to close usb device pointer.
58 Sets ftdi->usb_dev to NULL.
59 \internal
60
61 \param ftdi pointer to ftdi_context
62
63 \retval none
64*/
65static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
66{
67 if (ftdi && ftdi->usb_dev)
68 {
69 libusb_close (ftdi->usb_dev);
70 ftdi->usb_dev = NULL;
71 if(ftdi->eeprom)
72 ftdi->eeprom->initialized_for_connected_device = 0;
73 }
74}
75
76/**
77 Initializes a ftdi_context.
78
79 \param ftdi pointer to ftdi_context
80
81 \retval 0: all fine
82 \retval -1: couldn't allocate read buffer
83 \retval -2: couldn't allocate struct buffer
84 \retval -3: libusb_init() failed
85
86 \remark This should be called before all functions
87*/
88int ftdi_init(struct ftdi_context *ftdi)
89{
90 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
91 ftdi->usb_ctx = NULL;
92 ftdi->usb_dev = NULL;
93 ftdi->usb_read_timeout = 5000;
94 ftdi->usb_write_timeout = 5000;
95
96 ftdi->type = TYPE_BM; /* chip type */
97 ftdi->baudrate = -1;
98 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
99
100 ftdi->readbuffer = NULL;
101 ftdi->readbuffer_offset = 0;
102 ftdi->readbuffer_remaining = 0;
103 ftdi->writebuffer_chunksize = 4096;
104 ftdi->max_packet_size = 0;
105 ftdi->error_str = NULL;
106 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
107
108 if (libusb_init(&ftdi->usb_ctx) < 0)
109 ftdi_error_return(-3, "libusb_init() failed");
110
111 ftdi_set_interface(ftdi, INTERFACE_ANY);
112 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
113
114 if (eeprom == 0)
115 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
116 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
117 ftdi->eeprom = eeprom;
118
119 /* All fine. Now allocate the readbuffer */
120 return ftdi_read_data_set_chunksize(ftdi, 4096);
121}
122
123/**
124 Allocate and initialize a new ftdi_context
125
126 \return a pointer to a new ftdi_context, or NULL on failure
127*/
128struct ftdi_context *ftdi_new(void)
129{
130 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
131
132 if (ftdi == NULL)
133 {
134 return NULL;
135 }
136
137 if (ftdi_init(ftdi) != 0)
138 {
139 free(ftdi);
140 return NULL;
141 }
142
143 return ftdi;
144}
145
146/**
147 Open selected channels on a chip, otherwise use first channel.
148
149 \param ftdi pointer to ftdi_context
150 \param interface Interface to use for FT2232C/2232H/4232H chips.
151
152 \retval 0: all fine
153 \retval -1: unknown interface
154 \retval -2: USB device unavailable
155 \retval -3: Device already open, interface can't be set in that state
156*/
157int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
158{
159 if (ftdi == NULL)
160 ftdi_error_return(-2, "USB device unavailable");
161
162 if (ftdi->usb_dev != NULL)
163 {
164 int check_interface = interface;
165 if (check_interface == INTERFACE_ANY)
166 check_interface = INTERFACE_A;
167
168 if (ftdi->index != check_interface)
169 ftdi_error_return(-3, "Interface can not be changed on an already open device");
170 }
171
172 switch (interface)
173 {
174 case INTERFACE_ANY:
175 case INTERFACE_A:
176 ftdi->interface = 0;
177 ftdi->index = INTERFACE_A;
178 ftdi->in_ep = 0x02;
179 ftdi->out_ep = 0x81;
180 break;
181 case INTERFACE_B:
182 ftdi->interface = 1;
183 ftdi->index = INTERFACE_B;
184 ftdi->in_ep = 0x04;
185 ftdi->out_ep = 0x83;
186 break;
187 case INTERFACE_C:
188 ftdi->interface = 2;
189 ftdi->index = INTERFACE_C;
190 ftdi->in_ep = 0x06;
191 ftdi->out_ep = 0x85;
192 break;
193 case INTERFACE_D:
194 ftdi->interface = 3;
195 ftdi->index = INTERFACE_D;
196 ftdi->in_ep = 0x08;
197 ftdi->out_ep = 0x87;
198 break;
199 default:
200 ftdi_error_return(-1, "Unknown interface");
201 }
202 return 0;
203}
204
205/**
206 Deinitializes a ftdi_context.
207
208 \param ftdi pointer to ftdi_context
209*/
210void ftdi_deinit(struct ftdi_context *ftdi)
211{
212 if (ftdi == NULL)
213 return;
214
215 ftdi_usb_close_internal (ftdi);
216
217 if (ftdi->readbuffer != NULL)
218 {
219 free(ftdi->readbuffer);
220 ftdi->readbuffer = NULL;
221 }
222
223 if (ftdi->eeprom != NULL)
224 {
225 if (ftdi->eeprom->manufacturer != 0)
226 {
227 free(ftdi->eeprom->manufacturer);
228 ftdi->eeprom->manufacturer = 0;
229 }
230 if (ftdi->eeprom->product != 0)
231 {
232 free(ftdi->eeprom->product);
233 ftdi->eeprom->product = 0;
234 }
235 if (ftdi->eeprom->serial != 0)
236 {
237 free(ftdi->eeprom->serial);
238 ftdi->eeprom->serial = 0;
239 }
240 free(ftdi->eeprom);
241 ftdi->eeprom = NULL;
242 }
243
244 if (ftdi->usb_ctx)
245 {
246 libusb_exit(ftdi->usb_ctx);
247 ftdi->usb_ctx = NULL;
248 }
249}
250
251/**
252 Deinitialize and free an ftdi_context.
253
254 \param ftdi pointer to ftdi_context
255*/
256void ftdi_free(struct ftdi_context *ftdi)
257{
258 ftdi_deinit(ftdi);
259 free(ftdi);
260}
261
262/**
263 Use an already open libusb device.
264
265 \param ftdi pointer to ftdi_context
266 \param usb libusb libusb_device_handle to use
267*/
268void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
269{
270 if (ftdi == NULL)
271 return;
272
273 ftdi->usb_dev = usb;
274}
275
276/**
277 * @brief Get libftdi library version
278 *
279 * @return ftdi_version_info Library version information
280 **/
281struct ftdi_version_info ftdi_get_library_version(void)
282{
283 struct ftdi_version_info ver;
284
285 ver.major = FTDI_MAJOR_VERSION;
286 ver.minor = FTDI_MINOR_VERSION;
287 ver.micro = FTDI_MICRO_VERSION;
288 ver.version_str = FTDI_VERSION_STRING;
289 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
290
291 return ver;
292}
293
294/**
295 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
296 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
297 use. With VID:PID 0:0, search for the default devices
298 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
299
300 \param ftdi pointer to ftdi_context
301 \param devlist Pointer where to store list of found devices
302 \param vendor Vendor ID to search for
303 \param product Product ID to search for
304
305 \retval >0: number of devices found
306 \retval -3: out of memory
307 \retval -5: libusb_get_device_list() failed
308 \retval -6: libusb_get_device_descriptor() failed
309*/
310int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
311{
312 struct ftdi_device_list **curdev;
313 libusb_device *dev;
314 libusb_device **devs;
315 int count = 0;
316 int i = 0;
317
318 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
319 ftdi_error_return(-5, "libusb_get_device_list() failed");
320
321 curdev = devlist;
322 *curdev = NULL;
323
324 while ((dev = devs[i++]) != NULL)
325 {
326 struct libusb_device_descriptor desc;
327
328 if (libusb_get_device_descriptor(dev, &desc) < 0)
329 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
330
331 if (((vendor || product) &&
332 desc.idVendor == vendor && desc.idProduct == product) ||
333 (!(vendor || product) &&
334 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
335 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
336 || desc.idProduct == 0x6015)))
337 {
338 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
339 if (!*curdev)
340 ftdi_error_return_free_device_list(-3, "out of memory", devs);
341
342 (*curdev)->next = NULL;
343 (*curdev)->dev = dev;
344 libusb_ref_device(dev);
345 curdev = &(*curdev)->next;
346 count++;
347 }
348 }
349 libusb_free_device_list(devs,1);
350 return count;
351}
352
353/**
354 Frees a usb device list.
355
356 \param devlist USB device list created by ftdi_usb_find_all()
357*/
358void ftdi_list_free(struct ftdi_device_list **devlist)
359{
360 struct ftdi_device_list *curdev, *next;
361
362 for (curdev = *devlist; curdev != NULL;)
363 {
364 next = curdev->next;
365 libusb_unref_device(curdev->dev);
366 free(curdev);
367 curdev = next;
368 }
369
370 *devlist = NULL;
371}
372
373/**
374 Frees a usb device list.
375
376 \param devlist USB device list created by ftdi_usb_find_all()
377*/
378void ftdi_list_free2(struct ftdi_device_list *devlist)
379{
380 ftdi_list_free(&devlist);
381}
382
383/**
384 Return device ID strings from the usb device.
385
386 The parameters manufacturer, description and serial may be NULL
387 or pointer to buffers to store the fetched strings.
388
389 \note Use this function only in combination with ftdi_usb_find_all()
390 as it closes the internal "usb_dev" after use.
391
392 \param ftdi pointer to ftdi_context
393 \param dev libusb usb_dev to use
394 \param manufacturer Store manufacturer string here if not NULL
395 \param mnf_len Buffer size of manufacturer string
396 \param description Store product description string here if not NULL
397 \param desc_len Buffer size of product description string
398 \param serial Store serial string here if not NULL
399 \param serial_len Buffer size of serial string
400
401 \retval 0: all fine
402 \retval -1: wrong arguments
403 \retval -4: unable to open device
404 \retval -7: get product manufacturer failed
405 \retval -8: get product description failed
406 \retval -9: get serial number failed
407 \retval -11: libusb_get_device_descriptor() failed
408*/
409int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
410 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
411{
412 struct libusb_device_descriptor desc;
413
414 if ((ftdi==NULL) || (dev==NULL))
415 return -1;
416
417 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
418 ftdi_error_return(-4, "libusb_open() failed");
419
420 if (libusb_get_device_descriptor(dev, &desc) < 0)
421 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
422
423 if (manufacturer != NULL)
424 {
425 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
426 {
427 ftdi_usb_close_internal (ftdi);
428 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
429 }
430 }
431
432 if (description != NULL)
433 {
434 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
435 {
436 ftdi_usb_close_internal (ftdi);
437 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
438 }
439 }
440
441 if (serial != NULL)
442 {
443 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
444 {
445 ftdi_usb_close_internal (ftdi);
446 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
447 }
448 }
449
450 ftdi_usb_close_internal (ftdi);
451
452 return 0;
453}
454
455/**
456 * Internal function to determine the maximum packet size.
457 * \param ftdi pointer to ftdi_context
458 * \param dev libusb usb_dev to use
459 * \retval Maximum packet size for this device
460 */
461static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
462{
463 struct libusb_device_descriptor desc;
464 struct libusb_config_descriptor *config0;
465 unsigned int packet_size;
466
467 // Sanity check
468 if (ftdi == NULL || dev == NULL)
469 return 64;
470
471 // Determine maximum packet size. Init with default value.
472 // New hi-speed devices from FTDI use a packet size of 512 bytes
473 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
474 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
475 packet_size = 512;
476 else
477 packet_size = 64;
478
479 if (libusb_get_device_descriptor(dev, &desc) < 0)
480 return packet_size;
481
482 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
483 return packet_size;
484
485 if (desc.bNumConfigurations > 0)
486 {
487 if (ftdi->interface < config0->bNumInterfaces)
488 {
489 struct libusb_interface interface = config0->interface[ftdi->interface];
490 if (interface.num_altsetting > 0)
491 {
492 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
493 if (descriptor.bNumEndpoints > 0)
494 {
495 packet_size = descriptor.endpoint[0].wMaxPacketSize;
496 }
497 }
498 }
499 }
500
501 libusb_free_config_descriptor (config0);
502 return packet_size;
503}
504
505/**
506 Opens a ftdi device given by an usb_device.
507
508 \param ftdi pointer to ftdi_context
509 \param dev libusb usb_dev to use
510
511 \retval 0: all fine
512 \retval -3: unable to config device
513 \retval -4: unable to open device
514 \retval -5: unable to claim device
515 \retval -6: reset failed
516 \retval -7: set baudrate failed
517 \retval -8: ftdi context invalid
518 \retval -9: libusb_get_device_descriptor() failed
519 \retval -10: libusb_get_config_descriptor() failed
520 \retval -11: libusb_detach_kernel_driver() failed
521 \retval -12: libusb_get_configuration() failed
522*/
523int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
524{
525 struct libusb_device_descriptor desc;
526 struct libusb_config_descriptor *config0;
527 int cfg, cfg0, detach_errno = 0;
528
529 if (ftdi == NULL)
530 ftdi_error_return(-8, "ftdi context invalid");
531
532 if (libusb_open(dev, &ftdi->usb_dev) < 0)
533 ftdi_error_return(-4, "libusb_open() failed");
534
535 if (libusb_get_device_descriptor(dev, &desc) < 0)
536 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
537
538 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
539 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
540 cfg0 = config0->bConfigurationValue;
541 libusb_free_config_descriptor (config0);
542
543 // Try to detach ftdi_sio kernel module.
544 //
545 // The return code is kept in a separate variable and only parsed
546 // if usb_set_configuration() or usb_claim_interface() fails as the
547 // detach operation might be denied and everything still works fine.
548 // Likely scenario is a static ftdi_sio kernel module.
549 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
550 {
551 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
552 detach_errno = errno;
553 }
554
555 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
556 ftdi_error_return(-12, "libusb_get_configuration () failed");
557 // set configuration (needed especially for windows)
558 // tolerate EBUSY: one device with one configuration, but two interfaces
559 // and libftdi sessions to both interfaces (e.g. FT2232)
560 if (desc.bNumConfigurations > 0 && cfg != cfg0)
561 {
562 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
563 {
564 ftdi_usb_close_internal (ftdi);
565 if (detach_errno == EPERM)
566 {
567 ftdi_error_return(-8, "inappropriate permissions on device!");
568 }
569 else
570 {
571 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
572 }
573 }
574 }
575
576 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
577 {
578 ftdi_usb_close_internal (ftdi);
579 if (detach_errno == EPERM)
580 {
581 ftdi_error_return(-8, "inappropriate permissions on device!");
582 }
583 else
584 {
585 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
586 }
587 }
588
589 if (ftdi_usb_reset (ftdi) != 0)
590 {
591 ftdi_usb_close_internal (ftdi);
592 ftdi_error_return(-6, "ftdi_usb_reset failed");
593 }
594
595 // Try to guess chip type
596 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
597 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
598 && desc.iSerialNumber == 0))
599 ftdi->type = TYPE_BM;
600 else if (desc.bcdDevice == 0x200)
601 ftdi->type = TYPE_AM;
602 else if (desc.bcdDevice == 0x500)
603 ftdi->type = TYPE_2232C;
604 else if (desc.bcdDevice == 0x600)
605 ftdi->type = TYPE_R;
606 else if (desc.bcdDevice == 0x700)
607 ftdi->type = TYPE_2232H;
608 else if (desc.bcdDevice == 0x800)
609 ftdi->type = TYPE_4232H;
610 else if (desc.bcdDevice == 0x900)
611 ftdi->type = TYPE_232H;
612 else if (desc.bcdDevice == 0x1000)
613 ftdi->type = TYPE_230X;
614
615 // Determine maximum packet size
616 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
617
618 if (ftdi_set_baudrate (ftdi, 9600) != 0)
619 {
620 ftdi_usb_close_internal (ftdi);
621 ftdi_error_return(-7, "set baudrate failed");
622 }
623
624 ftdi_error_return(0, "all fine");
625}
626
627/**
628 Opens the first device with a given vendor and product ids.
629
630 \param ftdi pointer to ftdi_context
631 \param vendor Vendor ID
632 \param product Product ID
633
634 \retval same as ftdi_usb_open_desc()
635*/
636int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
637{
638 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
639}
640
641/**
642 Opens the first device with a given, vendor id, product id,
643 description and serial.
644
645 \param ftdi pointer to ftdi_context
646 \param vendor Vendor ID
647 \param product Product ID
648 \param description Description to search for. Use NULL if not needed.
649 \param serial Serial to search for. Use NULL if not needed.
650
651 \retval 0: all fine
652 \retval -3: usb device not found
653 \retval -4: unable to open device
654 \retval -5: unable to claim device
655 \retval -6: reset failed
656 \retval -7: set baudrate failed
657 \retval -8: get product description failed
658 \retval -9: get serial number failed
659 \retval -12: libusb_get_device_list() failed
660 \retval -13: libusb_get_device_descriptor() failed
661*/
662int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
663 const char* description, const char* serial)
664{
665 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
666}
667
668/**
669 Opens the index-th device with a given, vendor id, product id,
670 description and serial.
671
672 \param ftdi pointer to ftdi_context
673 \param vendor Vendor ID
674 \param product Product ID
675 \param description Description to search for. Use NULL if not needed.
676 \param serial Serial to search for. Use NULL if not needed.
677 \param index Number of matching device to open if there are more than one, starts with 0.
678
679 \retval 0: all fine
680 \retval -1: usb_find_busses() failed
681 \retval -2: usb_find_devices() failed
682 \retval -3: usb device not found
683 \retval -4: unable to open device
684 \retval -5: unable to claim device
685 \retval -6: reset failed
686 \retval -7: set baudrate failed
687 \retval -8: get product description failed
688 \retval -9: get serial number failed
689 \retval -10: unable to close device
690 \retval -11: ftdi context invalid
691*/
692int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
693 const char* description, const char* serial, unsigned int index)
694{
695 libusb_device *dev;
696 libusb_device **devs;
697 char string[256];
698 int i = 0;
699
700 if (ftdi == NULL)
701 ftdi_error_return(-11, "ftdi context invalid");
702
703 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
704 ftdi_error_return(-12, "libusb_get_device_list() failed");
705
706 while ((dev = devs[i++]) != NULL)
707 {
708 struct libusb_device_descriptor desc;
709 int res;
710
711 if (libusb_get_device_descriptor(dev, &desc) < 0)
712 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
713
714 if (desc.idVendor == vendor && desc.idProduct == product)
715 {
716 if (libusb_open(dev, &ftdi->usb_dev) < 0)
717 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
718
719 if (description != NULL)
720 {
721 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
722 {
723 ftdi_usb_close_internal (ftdi);
724 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
725 }
726 if (strncmp(string, description, sizeof(string)) != 0)
727 {
728 ftdi_usb_close_internal (ftdi);
729 continue;
730 }
731 }
732 if (serial != NULL)
733 {
734 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
735 {
736 ftdi_usb_close_internal (ftdi);
737 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
738 }
739 if (strncmp(string, serial, sizeof(string)) != 0)
740 {
741 ftdi_usb_close_internal (ftdi);
742 continue;
743 }
744 }
745
746 ftdi_usb_close_internal (ftdi);
747
748 if (index > 0)
749 {
750 index--;
751 continue;
752 }
753
754 res = ftdi_usb_open_dev(ftdi, dev);
755 libusb_free_device_list(devs,1);
756 return res;
757 }
758 }
759
760 // device not found
761 ftdi_error_return_free_device_list(-3, "device not found", devs);
762}
763
764/**
765 Opens the ftdi-device described by a description-string.
766 Intended to be used for parsing a device-description given as commandline argument.
767
768 \param ftdi pointer to ftdi_context
769 \param description NULL-terminated description-string, using this format:
770 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
771 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
772 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
773 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
774
775 \note The description format may be extended in later versions.
776
777 \retval 0: all fine
778 \retval -2: libusb_get_device_list() failed
779 \retval -3: usb device not found
780 \retval -4: unable to open device
781 \retval -5: unable to claim device
782 \retval -6: reset failed
783 \retval -7: set baudrate failed
784 \retval -8: get product description failed
785 \retval -9: get serial number failed
786 \retval -10: unable to close device
787 \retval -11: illegal description format
788 \retval -12: ftdi context invalid
789*/
790int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
791{
792 if (ftdi == NULL)
793 ftdi_error_return(-12, "ftdi context invalid");
794
795 if (description[0] == 0 || description[1] != ':')
796 ftdi_error_return(-11, "illegal description format");
797
798 if (description[0] == 'd')
799 {
800 libusb_device *dev;
801 libusb_device **devs;
802 unsigned int bus_number, device_address;
803 int i = 0;
804
805 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
806 ftdi_error_return(-2, "libusb_get_device_list() failed");
807
808 /* XXX: This doesn't handle symlinks/odd paths/etc... */
809 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
810 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
811
812 while ((dev = devs[i++]) != NULL)
813 {
814 int ret;
815 if (bus_number == libusb_get_bus_number (dev)
816 && device_address == libusb_get_device_address (dev))
817 {
818 ret = ftdi_usb_open_dev(ftdi, dev);
819 libusb_free_device_list(devs,1);
820 return ret;
821 }
822 }
823
824 // device not found
825 ftdi_error_return_free_device_list(-3, "device not found", devs);
826 }
827 else if (description[0] == 'i' || description[0] == 's')
828 {
829 unsigned int vendor;
830 unsigned int product;
831 unsigned int index=0;
832 const char *serial=NULL;
833 const char *startp, *endp;
834
835 errno=0;
836 startp=description+2;
837 vendor=strtoul((char*)startp,(char**)&endp,0);
838 if (*endp != ':' || endp == startp || errno != 0)
839 ftdi_error_return(-11, "illegal description format");
840
841 startp=endp+1;
842 product=strtoul((char*)startp,(char**)&endp,0);
843 if (endp == startp || errno != 0)
844 ftdi_error_return(-11, "illegal description format");
845
846 if (description[0] == 'i' && *endp != 0)
847 {
848 /* optional index field in i-mode */
849 if (*endp != ':')
850 ftdi_error_return(-11, "illegal description format");
851
852 startp=endp+1;
853 index=strtoul((char*)startp,(char**)&endp,0);
854 if (*endp != 0 || endp == startp || errno != 0)
855 ftdi_error_return(-11, "illegal description format");
856 }
857 if (description[0] == 's')
858 {
859 if (*endp != ':')
860 ftdi_error_return(-11, "illegal description format");
861
862 /* rest of the description is the serial */
863 serial=endp+1;
864 }
865
866 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
867 }
868 else
869 {
870 ftdi_error_return(-11, "illegal description format");
871 }
872}
873
874/**
875 Resets the ftdi device.
876
877 \param ftdi pointer to ftdi_context
878
879 \retval 0: all fine
880 \retval -1: FTDI reset failed
881 \retval -2: USB device unavailable
882*/
883int ftdi_usb_reset(struct ftdi_context *ftdi)
884{
885 if (ftdi == NULL || ftdi->usb_dev == NULL)
886 ftdi_error_return(-2, "USB device unavailable");
887
888 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
889 SIO_RESET_REQUEST, SIO_RESET_SIO,
890 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
891 ftdi_error_return(-1,"FTDI reset failed");
892
893 // Invalidate data in the readbuffer
894 ftdi->readbuffer_offset = 0;
895 ftdi->readbuffer_remaining = 0;
896
897 return 0;
898}
899
900/**
901 Clears the read buffer on the chip and the internal read buffer.
902
903 \param ftdi pointer to ftdi_context
904
905 \retval 0: all fine
906 \retval -1: read buffer purge failed
907 \retval -2: USB device unavailable
908*/
909int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
910{
911 if (ftdi == NULL || ftdi->usb_dev == NULL)
912 ftdi_error_return(-2, "USB device unavailable");
913
914 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
915 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
916 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
917 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
918
919 // Invalidate data in the readbuffer
920 ftdi->readbuffer_offset = 0;
921 ftdi->readbuffer_remaining = 0;
922
923 return 0;
924}
925
926/**
927 Clears the write buffer on the chip.
928
929 \param ftdi pointer to ftdi_context
930
931 \retval 0: all fine
932 \retval -1: write buffer purge failed
933 \retval -2: USB device unavailable
934*/
935int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
936{
937 if (ftdi == NULL || ftdi->usb_dev == NULL)
938 ftdi_error_return(-2, "USB device unavailable");
939
940 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
941 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
942 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
943 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
944
945 return 0;
946}
947
948/**
949 Clears the buffers on the chip and the internal read buffer.
950
951 \param ftdi pointer to ftdi_context
952
953 \retval 0: all fine
954 \retval -1: read buffer purge failed
955 \retval -2: write buffer purge failed
956 \retval -3: USB device unavailable
957*/
958int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
959{
960 int result;
961
962 if (ftdi == NULL || ftdi->usb_dev == NULL)
963 ftdi_error_return(-3, "USB device unavailable");
964
965 result = ftdi_usb_purge_rx_buffer(ftdi);
966 if (result < 0)
967 return -1;
968
969 result = ftdi_usb_purge_tx_buffer(ftdi);
970 if (result < 0)
971 return -2;
972
973 return 0;
974}
975
976
977
978/**
979 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
980
981 \param ftdi pointer to ftdi_context
982
983 \retval 0: all fine
984 \retval -1: usb_release failed
985 \retval -3: ftdi context invalid
986*/
987int ftdi_usb_close(struct ftdi_context *ftdi)
988{
989 int rtn = 0;
990
991 if (ftdi == NULL)
992 ftdi_error_return(-3, "ftdi context invalid");
993
994 if (ftdi->usb_dev != NULL)
995 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
996 rtn = -1;
997
998 ftdi_usb_close_internal (ftdi);
999
1000 return rtn;
1001}
1002
1003/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1004 to encoded divisor and the achievable baudrate
1005 Function is only used internally
1006 \internal
1007
1008 See AN120
1009 clk/1 -> 0
1010 clk/1.5 -> 1
1011 clk/2 -> 2
1012 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1013 The fractional part has frac_code encoding
1014*/
1015static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1016
1017{
1018 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1019 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1020 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1021 int divisor, best_divisor, best_baud, best_baud_diff;
1022 int i;
1023 divisor = 24000000 / baudrate;
1024
1025 // Round down to supported fraction (AM only)
1026 divisor -= am_adjust_dn[divisor & 7];
1027
1028 // Try this divisor and the one above it (because division rounds down)
1029 best_divisor = 0;
1030 best_baud = 0;
1031 best_baud_diff = 0;
1032 for (i = 0; i < 2; i++)
1033 {
1034 int try_divisor = divisor + i;
1035 int baud_estimate;
1036 int baud_diff;
1037
1038 // Round up to supported divisor value
1039 if (try_divisor <= 8)
1040 {
1041 // Round up to minimum supported divisor
1042 try_divisor = 8;
1043 }
1044 else if (divisor < 16)
1045 {
1046 // AM doesn't support divisors 9 through 15 inclusive
1047 try_divisor = 16;
1048 }
1049 else
1050 {
1051 // Round up to supported fraction (AM only)
1052 try_divisor += am_adjust_up[try_divisor & 7];
1053 if (try_divisor > 0x1FFF8)
1054 {
1055 // Round down to maximum supported divisor value (for AM)
1056 try_divisor = 0x1FFF8;
1057 }
1058 }
1059 // Get estimated baud rate (to nearest integer)
1060 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1061 // Get absolute difference from requested baud rate
1062 if (baud_estimate < baudrate)
1063 {
1064 baud_diff = baudrate - baud_estimate;
1065 }
1066 else
1067 {
1068 baud_diff = baud_estimate - baudrate;
1069 }
1070 if (i == 0 || baud_diff < best_baud_diff)
1071 {
1072 // Closest to requested baud rate so far
1073 best_divisor = try_divisor;
1074 best_baud = baud_estimate;
1075 best_baud_diff = baud_diff;
1076 if (baud_diff == 0)
1077 {
1078 // Spot on! No point trying
1079 break;
1080 }
1081 }
1082 }
1083 // Encode the best divisor value
1084 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1085 // Deal with special cases for encoded value
1086 if (*encoded_divisor == 1)
1087 {
1088 *encoded_divisor = 0; // 3000000 baud
1089 }
1090 else if (*encoded_divisor == 0x4001)
1091 {
1092 *encoded_divisor = 1; // 2000000 baud (BM only)
1093 }
1094 return best_baud;
1095}
1096
1097/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1098 to encoded divisor and the achievable baudrate
1099 Function is only used internally
1100 \internal
1101
1102 See AN120
1103 clk/1 -> 0
1104 clk/1.5 -> 1
1105 clk/2 -> 2
1106 From /2, 0.125 steps may be taken.
1107 The fractional part has frac_code encoding
1108
1109 value[13:0] of value is the divisor
1110 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1111
1112 H Type have all features above with
1113 {index[8],value[15:14]} is the encoded subdivisor
1114
1115 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1116 {index[0],value[15:14]} is the encoded subdivisor
1117
1118 AM Type chips have only four fractional subdivisors at value[15:14]
1119 for subdivisors 0, 0.5, 0.25, 0.125
1120*/
1121static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor)
1122{
1123 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1124 int best_baud = 0;
1125 int divisor, best_divisor;
1126 if (baudrate >= clk/clk_div)
1127 {
1128 *encoded_divisor = 0;
1129 best_baud = clk/clk_div;
1130 }
1131 else if (baudrate >= clk/(clk_div + clk_div/2))
1132 {
1133 *encoded_divisor = 1;
1134 best_baud = clk/(clk_div + clk_div/2);
1135 }
1136 else if (baudrate >= clk/(2*clk_div))
1137 {
1138 *encoded_divisor = 2;
1139 best_baud = clk/(2*clk_div);
1140 }
1141 else
1142 {
1143 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1144 divisor = clk*16/clk_div / baudrate;
1145 if (divisor & 1) /* Decide if to round up or down*/
1146 best_divisor = divisor /2 +1;
1147 else
1148 best_divisor = divisor/2;
1149 if(best_divisor > 0x20000)
1150 best_divisor = 0x1ffff;
1151 best_baud = clk*16/clk_div/best_divisor;
1152 if (best_baud & 1) /* Decide if to round up or down*/
1153 best_baud = best_baud /2 +1;
1154 else
1155 best_baud = best_baud /2;
1156 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1157 }
1158 return best_baud;
1159}
1160/**
1161 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1162 Function is only used internally
1163 \internal
1164*/
1165static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1166 unsigned short *value, unsigned short *index)
1167{
1168 int best_baud;
1169 unsigned long encoded_divisor;
1170
1171 if (baudrate <= 0)
1172 {
1173 // Return error
1174 return -1;
1175 }
1176
1177#define H_CLK 120000000
1178#define C_CLK 48000000
1179 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1180 {
1181 if(baudrate*10 > H_CLK /0x3fff)
1182 {
1183 /* On H Devices, use 12 000 000 Baudrate when possible
1184 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1185 three fractional bits and a 120 MHz clock
1186 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1187 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1188 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1189 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1190 }
1191 else
1192 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1193 }
1194 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R ))
1195 {
1196 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1197 }
1198 else
1199 {
1200 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1201 }
1202 // Split into "value" and "index" values
1203 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1204 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1205 {
1206 *index = (unsigned short)(encoded_divisor >> 8);
1207 *index &= 0xFF00;
1208 *index |= ftdi->index;
1209 }
1210 else
1211 *index = (unsigned short)(encoded_divisor >> 16);
1212
1213 // Return the nearest baud rate
1214 return best_baud;
1215}
1216
1217/**
1218 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1219 * Do not use, it's only for the unit test framework
1220 **/
1221int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1222 unsigned short *value, unsigned short *index)
1223{
1224 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1225}
1226
1227/**
1228 Sets the chip baud rate
1229
1230 \param ftdi pointer to ftdi_context
1231 \param baudrate baud rate to set
1232
1233 \retval 0: all fine
1234 \retval -1: invalid baudrate
1235 \retval -2: setting baudrate failed
1236 \retval -3: USB device unavailable
1237*/
1238int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1239{
1240 unsigned short value, index;
1241 int actual_baudrate;
1242
1243 if (ftdi == NULL || ftdi->usb_dev == NULL)
1244 ftdi_error_return(-3, "USB device unavailable");
1245
1246 if (ftdi->bitbang_enabled)
1247 {
1248 baudrate = baudrate*4;
1249 }
1250
1251 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1252 if (actual_baudrate <= 0)
1253 ftdi_error_return (-1, "Silly baudrate <= 0.");
1254
1255 // Check within tolerance (about 5%)
1256 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1257 || ((actual_baudrate < baudrate)
1258 ? (actual_baudrate * 21 < baudrate * 20)
1259 : (baudrate * 21 < actual_baudrate * 20)))
1260 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1261
1262 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1263 SIO_SET_BAUDRATE_REQUEST, value,
1264 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1265 ftdi_error_return (-2, "Setting new baudrate failed");
1266
1267 ftdi->baudrate = baudrate;
1268 return 0;
1269}
1270
1271/**
1272 Set (RS232) line characteristics.
1273 The break type can only be set via ftdi_set_line_property2()
1274 and defaults to "off".
1275
1276 \param ftdi pointer to ftdi_context
1277 \param bits Number of bits
1278 \param sbit Number of stop bits
1279 \param parity Parity mode
1280
1281 \retval 0: all fine
1282 \retval -1: Setting line property failed
1283*/
1284int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1285 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1286{
1287 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1288}
1289
1290/**
1291 Set (RS232) line characteristics
1292
1293 \param ftdi pointer to ftdi_context
1294 \param bits Number of bits
1295 \param sbit Number of stop bits
1296 \param parity Parity mode
1297 \param break_type Break type
1298
1299 \retval 0: all fine
1300 \retval -1: Setting line property failed
1301 \retval -2: USB device unavailable
1302*/
1303int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1304 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1305 enum ftdi_break_type break_type)
1306{
1307 unsigned short value = bits;
1308
1309 if (ftdi == NULL || ftdi->usb_dev == NULL)
1310 ftdi_error_return(-2, "USB device unavailable");
1311
1312 switch (parity)
1313 {
1314 case NONE:
1315 value |= (0x00 << 8);
1316 break;
1317 case ODD:
1318 value |= (0x01 << 8);
1319 break;
1320 case EVEN:
1321 value |= (0x02 << 8);
1322 break;
1323 case MARK:
1324 value |= (0x03 << 8);
1325 break;
1326 case SPACE:
1327 value |= (0x04 << 8);
1328 break;
1329 }
1330
1331 switch (sbit)
1332 {
1333 case STOP_BIT_1:
1334 value |= (0x00 << 11);
1335 break;
1336 case STOP_BIT_15:
1337 value |= (0x01 << 11);
1338 break;
1339 case STOP_BIT_2:
1340 value |= (0x02 << 11);
1341 break;
1342 }
1343
1344 switch (break_type)
1345 {
1346 case BREAK_OFF:
1347 value |= (0x00 << 14);
1348 break;
1349 case BREAK_ON:
1350 value |= (0x01 << 14);
1351 break;
1352 }
1353
1354 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1355 SIO_SET_DATA_REQUEST, value,
1356 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1357 ftdi_error_return (-1, "Setting new line property failed");
1358
1359 return 0;
1360}
1361
1362/**
1363 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1364
1365 \param ftdi pointer to ftdi_context
1366 \param buf Buffer with the data
1367 \param size Size of the buffer
1368
1369 \retval -666: USB device unavailable
1370 \retval <0: error code from usb_bulk_write()
1371 \retval >0: number of bytes written
1372*/
1373int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1374{
1375 int offset = 0;
1376 int actual_length;
1377
1378 if (ftdi == NULL || ftdi->usb_dev == NULL)
1379 ftdi_error_return(-666, "USB device unavailable");
1380
1381 while (offset < size)
1382 {
1383 int write_size = ftdi->writebuffer_chunksize;
1384
1385 if (offset+write_size > size)
1386 write_size = size-offset;
1387
1388 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1389 ftdi_error_return(-1, "usb bulk write failed");
1390
1391 offset += actual_length;
1392 }
1393
1394 return offset;
1395}
1396
1397static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1398{
1399 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1400 struct ftdi_context *ftdi = tc->ftdi;
1401 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1402
1403 packet_size = ftdi->max_packet_size;
1404
1405 actual_length = transfer->actual_length;
1406
1407 if (actual_length > 2)
1408 {
1409 // skip FTDI status bytes.
1410 // Maybe stored in the future to enable modem use
1411 num_of_chunks = actual_length / packet_size;
1412 chunk_remains = actual_length % packet_size;
1413 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1414
1415 ftdi->readbuffer_offset += 2;
1416 actual_length -= 2;
1417
1418 if (actual_length > packet_size - 2)
1419 {
1420 for (i = 1; i < num_of_chunks; i++)
1421 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1422 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1423 packet_size - 2);
1424 if (chunk_remains > 2)
1425 {
1426 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1427 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1428 chunk_remains-2);
1429 actual_length -= 2*num_of_chunks;
1430 }
1431 else
1432 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1433 }
1434
1435 if (actual_length > 0)
1436 {
1437 // data still fits in buf?
1438 if (tc->offset + actual_length <= tc->size)
1439 {
1440 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1441 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1442 tc->offset += actual_length;
1443
1444 ftdi->readbuffer_offset = 0;
1445 ftdi->readbuffer_remaining = 0;
1446
1447 /* Did we read exactly the right amount of bytes? */
1448 if (tc->offset == tc->size)
1449 {
1450 //printf("read_data exact rem %d offset %d\n",
1451 //ftdi->readbuffer_remaining, offset);
1452 tc->completed = 1;
1453 return;
1454 }
1455 }
1456 else
1457 {
1458 // only copy part of the data or size <= readbuffer_chunksize
1459 int part_size = tc->size - tc->offset;
1460 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1461 tc->offset += part_size;
1462
1463 ftdi->readbuffer_offset += part_size;
1464 ftdi->readbuffer_remaining = actual_length - part_size;
1465
1466 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1467 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1468 tc->completed = 1;
1469 return;
1470 }
1471 }
1472 }
1473 ret = libusb_submit_transfer (transfer);
1474 if (ret < 0)
1475 tc->completed = 1;
1476}
1477
1478
1479static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1480{
1481 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1482 struct ftdi_context *ftdi = tc->ftdi;
1483
1484 tc->offset += transfer->actual_length;
1485
1486 if (tc->offset == tc->size)
1487 {
1488 tc->completed = 1;
1489 }
1490 else
1491 {
1492 int write_size = ftdi->writebuffer_chunksize;
1493 int ret;
1494
1495 if (tc->offset + write_size > tc->size)
1496 write_size = tc->size - tc->offset;
1497
1498 transfer->length = write_size;
1499 transfer->buffer = tc->buf + tc->offset;
1500 ret = libusb_submit_transfer (transfer);
1501 if (ret < 0)
1502 tc->completed = 1;
1503 }
1504}
1505
1506
1507/**
1508 Writes data to the chip. Does not wait for completion of the transfer
1509 nor does it make sure that the transfer was successful.
1510
1511 Use libusb 1.0 asynchronous API.
1512
1513 \param ftdi pointer to ftdi_context
1514 \param buf Buffer with the data
1515 \param size Size of the buffer
1516
1517 \retval NULL: Some error happens when submit transfer
1518 \retval !NULL: Pointer to a ftdi_transfer_control
1519*/
1520
1521struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1522{
1523 struct ftdi_transfer_control *tc;
1524 struct libusb_transfer *transfer;
1525 int write_size, ret;
1526
1527 if (ftdi == NULL || ftdi->usb_dev == NULL)
1528 return NULL;
1529
1530 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1531 if (!tc)
1532 return NULL;
1533
1534 transfer = libusb_alloc_transfer(0);
1535 if (!transfer)
1536 {
1537 free(tc);
1538 return NULL;
1539 }
1540
1541 tc->ftdi = ftdi;
1542 tc->completed = 0;
1543 tc->buf = buf;
1544 tc->size = size;
1545 tc->offset = 0;
1546
1547 if (size < (int)ftdi->writebuffer_chunksize)
1548 write_size = size;
1549 else
1550 write_size = ftdi->writebuffer_chunksize;
1551
1552 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1553 write_size, ftdi_write_data_cb, tc,
1554 ftdi->usb_write_timeout);
1555 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1556
1557 ret = libusb_submit_transfer(transfer);
1558 if (ret < 0)
1559 {
1560 libusb_free_transfer(transfer);
1561 free(tc);
1562 return NULL;
1563 }
1564 tc->transfer = transfer;
1565
1566 return tc;
1567}
1568
1569/**
1570 Reads data from the chip. Does not wait for completion of the transfer
1571 nor does it make sure that the transfer was successful.
1572
1573 Use libusb 1.0 asynchronous API.
1574
1575 \param ftdi pointer to ftdi_context
1576 \param buf Buffer with the data
1577 \param size Size of the buffer
1578
1579 \retval NULL: Some error happens when submit transfer
1580 \retval !NULL: Pointer to a ftdi_transfer_control
1581*/
1582
1583struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1584{
1585 struct ftdi_transfer_control *tc;
1586 struct libusb_transfer *transfer;
1587 int ret;
1588
1589 if (ftdi == NULL || ftdi->usb_dev == NULL)
1590 return NULL;
1591
1592 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1593 if (!tc)
1594 return NULL;
1595
1596 tc->ftdi = ftdi;
1597 tc->buf = buf;
1598 tc->size = size;
1599
1600 if (size <= (int)ftdi->readbuffer_remaining)
1601 {
1602 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1603
1604 // Fix offsets
1605 ftdi->readbuffer_remaining -= size;
1606 ftdi->readbuffer_offset += size;
1607
1608 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1609
1610 tc->completed = 1;
1611 tc->offset = size;
1612 tc->transfer = NULL;
1613 return tc;
1614 }
1615
1616 tc->completed = 0;
1617 if (ftdi->readbuffer_remaining != 0)
1618 {
1619 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1620
1621 tc->offset = ftdi->readbuffer_remaining;
1622 }
1623 else
1624 tc->offset = 0;
1625
1626 transfer = libusb_alloc_transfer(0);
1627 if (!transfer)
1628 {
1629 free (tc);
1630 return NULL;
1631 }
1632
1633 ftdi->readbuffer_remaining = 0;
1634 ftdi->readbuffer_offset = 0;
1635
1636 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1637 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1638
1639 ret = libusb_submit_transfer(transfer);
1640 if (ret < 0)
1641 {
1642 libusb_free_transfer(transfer);
1643 free (tc);
1644 return NULL;
1645 }
1646 tc->transfer = transfer;
1647
1648 return tc;
1649}
1650
1651/**
1652 Wait for completion of the transfer.
1653
1654 Use libusb 1.0 asynchronous API.
1655
1656 \param tc pointer to ftdi_transfer_control
1657
1658 \retval < 0: Some error happens
1659 \retval >= 0: Data size transferred
1660*/
1661
1662int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1663{
1664 int ret;
1665
1666 while (!tc->completed)
1667 {
1668 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1669 if (ret < 0)
1670 {
1671 if (ret == LIBUSB_ERROR_INTERRUPTED)
1672 continue;
1673 libusb_cancel_transfer(tc->transfer);
1674 while (!tc->completed)
1675 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1676 break;
1677 libusb_free_transfer(tc->transfer);
1678 free (tc);
1679 return ret;
1680 }
1681 }
1682
1683 ret = tc->offset;
1684 /**
1685 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1686 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1687 **/
1688 if (tc->transfer)
1689 {
1690 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1691 ret = -1;
1692 libusb_free_transfer(tc->transfer);
1693 }
1694 free(tc);
1695 return ret;
1696}
1697
1698/**
1699 Configure write buffer chunk size.
1700 Default is 4096.
1701
1702 \param ftdi pointer to ftdi_context
1703 \param chunksize Chunk size
1704
1705 \retval 0: all fine
1706 \retval -1: ftdi context invalid
1707*/
1708int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1709{
1710 if (ftdi == NULL)
1711 ftdi_error_return(-1, "ftdi context invalid");
1712
1713 ftdi->writebuffer_chunksize = chunksize;
1714 return 0;
1715}
1716
1717/**
1718 Get write buffer chunk size.
1719
1720 \param ftdi pointer to ftdi_context
1721 \param chunksize Pointer to store chunk size in
1722
1723 \retval 0: all fine
1724 \retval -1: ftdi context invalid
1725*/
1726int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1727{
1728 if (ftdi == NULL)
1729 ftdi_error_return(-1, "ftdi context invalid");
1730
1731 *chunksize = ftdi->writebuffer_chunksize;
1732 return 0;
1733}
1734
1735/**
1736 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1737
1738 Automatically strips the two modem status bytes transfered during every read.
1739
1740 \param ftdi pointer to ftdi_context
1741 \param buf Buffer to store data in
1742 \param size Size of the buffer
1743
1744 \retval -666: USB device unavailable
1745 \retval <0: error code from libusb_bulk_transfer()
1746 \retval 0: no data was available
1747 \retval >0: number of bytes read
1748
1749*/
1750int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1751{
1752 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1753 int packet_size = ftdi->max_packet_size;
1754 int actual_length = 1;
1755
1756 if (ftdi == NULL || ftdi->usb_dev == NULL)
1757 ftdi_error_return(-666, "USB device unavailable");
1758
1759 // Packet size sanity check (avoid division by zero)
1760 if (packet_size == 0)
1761 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1762
1763 // everything we want is still in the readbuffer?
1764 if (size <= (int)ftdi->readbuffer_remaining)
1765 {
1766 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1767
1768 // Fix offsets
1769 ftdi->readbuffer_remaining -= size;
1770 ftdi->readbuffer_offset += size;
1771
1772 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1773
1774 return size;
1775 }
1776 // something still in the readbuffer, but not enough to satisfy 'size'?
1777 if (ftdi->readbuffer_remaining != 0)
1778 {
1779 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1780
1781 // Fix offset
1782 offset += ftdi->readbuffer_remaining;
1783 }
1784 // do the actual USB read
1785 while (offset < size && actual_length > 0)
1786 {
1787 ftdi->readbuffer_remaining = 0;
1788 ftdi->readbuffer_offset = 0;
1789 /* returns how much received */
1790 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1791 if (ret < 0)
1792 ftdi_error_return(ret, "usb bulk read failed");
1793
1794 if (actual_length > 2)
1795 {
1796 // skip FTDI status bytes.
1797 // Maybe stored in the future to enable modem use
1798 num_of_chunks = actual_length / packet_size;
1799 chunk_remains = actual_length % packet_size;
1800 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1801
1802 ftdi->readbuffer_offset += 2;
1803 actual_length -= 2;
1804
1805 if (actual_length > packet_size - 2)
1806 {
1807 for (i = 1; i < num_of_chunks; i++)
1808 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1809 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1810 packet_size - 2);
1811 if (chunk_remains > 2)
1812 {
1813 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1814 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1815 chunk_remains-2);
1816 actual_length -= 2*num_of_chunks;
1817 }
1818 else
1819 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1820 }
1821 }
1822 else if (actual_length <= 2)
1823 {
1824 // no more data to read?
1825 return offset;
1826 }
1827 if (actual_length > 0)
1828 {
1829 // data still fits in buf?
1830 if (offset+actual_length <= size)
1831 {
1832 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1833 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1834 offset += actual_length;
1835
1836 /* Did we read exactly the right amount of bytes? */
1837 if (offset == size)
1838 //printf("read_data exact rem %d offset %d\n",
1839 //ftdi->readbuffer_remaining, offset);
1840 return offset;
1841 }
1842 else
1843 {
1844 // only copy part of the data or size <= readbuffer_chunksize
1845 int part_size = size-offset;
1846 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1847
1848 ftdi->readbuffer_offset += part_size;
1849 ftdi->readbuffer_remaining = actual_length-part_size;
1850 offset += part_size;
1851
1852 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1853 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1854
1855 return offset;
1856 }
1857 }
1858 }
1859 // never reached
1860 return -127;
1861}
1862
1863/**
1864 Configure read buffer chunk size.
1865 Default is 4096.
1866
1867 Automatically reallocates the buffer.
1868
1869 \param ftdi pointer to ftdi_context
1870 \param chunksize Chunk size
1871
1872 \retval 0: all fine
1873 \retval -1: ftdi context invalid
1874*/
1875int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1876{
1877 unsigned char *new_buf;
1878
1879 if (ftdi == NULL)
1880 ftdi_error_return(-1, "ftdi context invalid");
1881
1882 // Invalidate all remaining data
1883 ftdi->readbuffer_offset = 0;
1884 ftdi->readbuffer_remaining = 0;
1885#ifdef __linux__
1886 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1887 which is defined in libusb-1.0. Otherwise, each USB read request will
1888 be divided into multiple URBs. This will cause issues on Linux kernel
1889 older than 2.6.32. */
1890 if (chunksize > 16384)
1891 chunksize = 16384;
1892#endif
1893
1894 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1895 ftdi_error_return(-1, "out of memory for readbuffer");
1896
1897 ftdi->readbuffer = new_buf;
1898 ftdi->readbuffer_chunksize = chunksize;
1899
1900 return 0;
1901}
1902
1903/**
1904 Get read buffer chunk size.
1905
1906 \param ftdi pointer to ftdi_context
1907 \param chunksize Pointer to store chunk size in
1908
1909 \retval 0: all fine
1910 \retval -1: FTDI context invalid
1911*/
1912int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1913{
1914 if (ftdi == NULL)
1915 ftdi_error_return(-1, "FTDI context invalid");
1916
1917 *chunksize = ftdi->readbuffer_chunksize;
1918 return 0;
1919}
1920
1921/**
1922 Enable/disable bitbang modes.
1923
1924 \param ftdi pointer to ftdi_context
1925 \param bitmask Bitmask to configure lines.
1926 HIGH/ON value configures a line as output.
1927 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1928
1929 \retval 0: all fine
1930 \retval -1: can't enable bitbang mode
1931 \retval -2: USB device unavailable
1932*/
1933int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1934{
1935 unsigned short usb_val;
1936
1937 if (ftdi == NULL || ftdi->usb_dev == NULL)
1938 ftdi_error_return(-2, "USB device unavailable");
1939
1940 usb_val = bitmask; // low byte: bitmask
1941 usb_val |= (mode << 8);
1942 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1943 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
1944
1945 ftdi->bitbang_mode = mode;
1946 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1947 return 0;
1948}
1949
1950/**
1951 Disable bitbang mode.
1952
1953 \param ftdi pointer to ftdi_context
1954
1955 \retval 0: all fine
1956 \retval -1: can't disable bitbang mode
1957 \retval -2: USB device unavailable
1958*/
1959int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1960{
1961 if (ftdi == NULL || ftdi->usb_dev == NULL)
1962 ftdi_error_return(-2, "USB device unavailable");
1963
1964 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1965 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1966
1967 ftdi->bitbang_enabled = 0;
1968 return 0;
1969}
1970
1971
1972/**
1973 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1974
1975 \param ftdi pointer to ftdi_context
1976 \param pins Pointer to store pins into
1977
1978 \retval 0: all fine
1979 \retval -1: read pins failed
1980 \retval -2: USB device unavailable
1981*/
1982int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1983{
1984 if (ftdi == NULL || ftdi->usb_dev == NULL)
1985 ftdi_error_return(-2, "USB device unavailable");
1986
1987 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1988 ftdi_error_return(-1, "read pins failed");
1989
1990 return 0;
1991}
1992
1993/**
1994 Set latency timer
1995
1996 The FTDI chip keeps data in the internal buffer for a specific
1997 amount of time if the buffer is not full yet to decrease
1998 load on the usb bus.
1999
2000 \param ftdi pointer to ftdi_context
2001 \param latency Value between 1 and 255
2002
2003 \retval 0: all fine
2004 \retval -1: latency out of range
2005 \retval -2: unable to set latency timer
2006 \retval -3: USB device unavailable
2007*/
2008int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2009{
2010 unsigned short usb_val;
2011
2012 if (latency < 1)
2013 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2014
2015 if (ftdi == NULL || ftdi->usb_dev == NULL)
2016 ftdi_error_return(-3, "USB device unavailable");
2017
2018 usb_val = latency;
2019 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2020 ftdi_error_return(-2, "unable to set latency timer");
2021
2022 return 0;
2023}
2024
2025/**
2026 Get latency timer
2027
2028 \param ftdi pointer to ftdi_context
2029 \param latency Pointer to store latency value in
2030
2031 \retval 0: all fine
2032 \retval -1: unable to get latency timer
2033 \retval -2: USB device unavailable
2034*/
2035int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2036{
2037 unsigned short usb_val;
2038
2039 if (ftdi == NULL || ftdi->usb_dev == NULL)
2040 ftdi_error_return(-2, "USB device unavailable");
2041
2042 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2043 ftdi_error_return(-1, "reading latency timer failed");
2044
2045 *latency = (unsigned char)usb_val;
2046 return 0;
2047}
2048
2049/**
2050 Poll modem status information
2051
2052 This function allows the retrieve the two status bytes of the device.
2053 The device sends these bytes also as a header for each read access
2054 where they are discarded by ftdi_read_data(). The chip generates
2055 the two stripped status bytes in the absence of data every 40 ms.
2056
2057 Layout of the first byte:
2058 - B0..B3 - must be 0
2059 - B4 Clear to send (CTS)
2060 0 = inactive
2061 1 = active
2062 - B5 Data set ready (DTS)
2063 0 = inactive
2064 1 = active
2065 - B6 Ring indicator (RI)
2066 0 = inactive
2067 1 = active
2068 - B7 Receive line signal detect (RLSD)
2069 0 = inactive
2070 1 = active
2071
2072 Layout of the second byte:
2073 - B0 Data ready (DR)
2074 - B1 Overrun error (OE)
2075 - B2 Parity error (PE)
2076 - B3 Framing error (FE)
2077 - B4 Break interrupt (BI)
2078 - B5 Transmitter holding register (THRE)
2079 - B6 Transmitter empty (TEMT)
2080 - B7 Error in RCVR FIFO
2081
2082 \param ftdi pointer to ftdi_context
2083 \param status Pointer to store status information in. Must be two bytes.
2084
2085 \retval 0: all fine
2086 \retval -1: unable to retrieve status information
2087 \retval -2: USB device unavailable
2088*/
2089int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2090{
2091 char usb_val[2];
2092
2093 if (ftdi == NULL || ftdi->usb_dev == NULL)
2094 ftdi_error_return(-2, "USB device unavailable");
2095
2096 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2097 ftdi_error_return(-1, "getting modem status failed");
2098
2099 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2100
2101 return 0;
2102}
2103
2104/**
2105 Set flowcontrol for ftdi chip
2106
2107 \param ftdi pointer to ftdi_context
2108 \param flowctrl flow control to use. should be
2109 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2110
2111 \retval 0: all fine
2112 \retval -1: set flow control failed
2113 \retval -2: USB device unavailable
2114*/
2115int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2116{
2117 if (ftdi == NULL || ftdi->usb_dev == NULL)
2118 ftdi_error_return(-2, "USB device unavailable");
2119
2120 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2121 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2122 NULL, 0, ftdi->usb_write_timeout) < 0)
2123 ftdi_error_return(-1, "set flow control failed");
2124
2125 return 0;
2126}
2127
2128/**
2129 Set dtr line
2130
2131 \param ftdi pointer to ftdi_context
2132 \param state state to set line to (1 or 0)
2133
2134 \retval 0: all fine
2135 \retval -1: set dtr failed
2136 \retval -2: USB device unavailable
2137*/
2138int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2139{
2140 unsigned short usb_val;
2141
2142 if (ftdi == NULL || ftdi->usb_dev == NULL)
2143 ftdi_error_return(-2, "USB device unavailable");
2144
2145 if (state)
2146 usb_val = SIO_SET_DTR_HIGH;
2147 else
2148 usb_val = SIO_SET_DTR_LOW;
2149
2150 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2151 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2152 NULL, 0, ftdi->usb_write_timeout) < 0)
2153 ftdi_error_return(-1, "set dtr failed");
2154
2155 return 0;
2156}
2157
2158/**
2159 Set rts line
2160
2161 \param ftdi pointer to ftdi_context
2162 \param state state to set line to (1 or 0)
2163
2164 \retval 0: all fine
2165 \retval -1: set rts failed
2166 \retval -2: USB device unavailable
2167*/
2168int ftdi_setrts(struct ftdi_context *ftdi, int state)
2169{
2170 unsigned short usb_val;
2171
2172 if (ftdi == NULL || ftdi->usb_dev == NULL)
2173 ftdi_error_return(-2, "USB device unavailable");
2174
2175 if (state)
2176 usb_val = SIO_SET_RTS_HIGH;
2177 else
2178 usb_val = SIO_SET_RTS_LOW;
2179
2180 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2181 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2182 NULL, 0, ftdi->usb_write_timeout) < 0)
2183 ftdi_error_return(-1, "set of rts failed");
2184
2185 return 0;
2186}
2187
2188/**
2189 Set dtr and rts line in one pass
2190
2191 \param ftdi pointer to ftdi_context
2192 \param dtr DTR state to set line to (1 or 0)
2193 \param rts RTS state to set line to (1 or 0)
2194
2195 \retval 0: all fine
2196 \retval -1: set dtr/rts failed
2197 \retval -2: USB device unavailable
2198 */
2199int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2200{
2201 unsigned short usb_val;
2202
2203 if (ftdi == NULL || ftdi->usb_dev == NULL)
2204 ftdi_error_return(-2, "USB device unavailable");
2205
2206 if (dtr)
2207 usb_val = SIO_SET_DTR_HIGH;
2208 else
2209 usb_val = SIO_SET_DTR_LOW;
2210
2211 if (rts)
2212 usb_val |= SIO_SET_RTS_HIGH;
2213 else
2214 usb_val |= SIO_SET_RTS_LOW;
2215
2216 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2217 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2218 NULL, 0, ftdi->usb_write_timeout) < 0)
2219 ftdi_error_return(-1, "set of rts/dtr failed");
2220
2221 return 0;
2222}
2223
2224/**
2225 Set the special event character
2226
2227 \param ftdi pointer to ftdi_context
2228 \param eventch Event character
2229 \param enable 0 to disable the event character, non-zero otherwise
2230
2231 \retval 0: all fine
2232 \retval -1: unable to set event character
2233 \retval -2: USB device unavailable
2234*/
2235int ftdi_set_event_char(struct ftdi_context *ftdi,
2236 unsigned char eventch, unsigned char enable)
2237{
2238 unsigned short usb_val;
2239
2240 if (ftdi == NULL || ftdi->usb_dev == NULL)
2241 ftdi_error_return(-2, "USB device unavailable");
2242
2243 usb_val = eventch;
2244 if (enable)
2245 usb_val |= 1 << 8;
2246
2247 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2248 ftdi_error_return(-1, "setting event character failed");
2249
2250 return 0;
2251}
2252
2253/**
2254 Set error character
2255
2256 \param ftdi pointer to ftdi_context
2257 \param errorch Error character
2258 \param enable 0 to disable the error character, non-zero otherwise
2259
2260 \retval 0: all fine
2261 \retval -1: unable to set error character
2262 \retval -2: USB device unavailable
2263*/
2264int ftdi_set_error_char(struct ftdi_context *ftdi,
2265 unsigned char errorch, unsigned char enable)
2266{
2267 unsigned short usb_val;
2268
2269 if (ftdi == NULL || ftdi->usb_dev == NULL)
2270 ftdi_error_return(-2, "USB device unavailable");
2271
2272 usb_val = errorch;
2273 if (enable)
2274 usb_val |= 1 << 8;
2275
2276 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2277 ftdi_error_return(-1, "setting error character failed");
2278
2279 return 0;
2280}
2281
2282/**
2283 Init eeprom with default values for the connected device
2284 \param ftdi pointer to ftdi_context
2285 \param manufacturer String to use as Manufacturer
2286 \param product String to use as Product description
2287 \param serial String to use as Serial number description
2288
2289 \retval 0: all fine
2290 \retval -1: No struct ftdi_context
2291 \retval -2: No struct ftdi_eeprom
2292 \retval -3: No connected device or device not yet opened
2293*/
2294int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2295 char * product, char * serial)
2296{
2297 struct ftdi_eeprom *eeprom;
2298
2299 if (ftdi == NULL)
2300 ftdi_error_return(-1, "No struct ftdi_context");
2301
2302 if (ftdi->eeprom == NULL)
2303 ftdi_error_return(-2,"No struct ftdi_eeprom");
2304
2305 eeprom = ftdi->eeprom;
2306 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2307
2308 if (ftdi->usb_dev == NULL)
2309 ftdi_error_return(-3, "No connected device or device not yet opened");
2310
2311 eeprom->vendor_id = 0x0403;
2312 eeprom->use_serial = 1;
2313 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2314 (ftdi->type == TYPE_R))
2315 eeprom->product_id = 0x6001;
2316 else if (ftdi->type == TYPE_4232H)
2317 eeprom->product_id = 0x6011;
2318 else if (ftdi->type == TYPE_232H)
2319 eeprom->product_id = 0x6014;
2320 else if (ftdi->type == TYPE_230X)
2321 eeprom->product_id = 0x6015;
2322 else
2323 eeprom->product_id = 0x6010;
2324
2325 if (ftdi->type == TYPE_AM)
2326 eeprom->usb_version = 0x0101;
2327 else
2328 eeprom->usb_version = 0x0200;
2329 eeprom->max_power = 100;
2330
2331 if (eeprom->manufacturer)
2332 free (eeprom->manufacturer);
2333 eeprom->manufacturer = NULL;
2334 if (manufacturer)
2335 {
2336 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2337 if (eeprom->manufacturer)
2338 strcpy(eeprom->manufacturer, manufacturer);
2339 }
2340
2341 if (eeprom->product)
2342 free (eeprom->product);
2343 eeprom->product = NULL;
2344 if(product)
2345 {
2346 eeprom->product = malloc(strlen(product)+1);
2347 if (eeprom->product)
2348 strcpy(eeprom->product, product);
2349 }
2350 else
2351 {
2352 const char* default_product;
2353 switch(ftdi->type)
2354 {
2355 case TYPE_AM: default_product = "AM"; break;
2356 case TYPE_BM: default_product = "BM"; break;
2357 case TYPE_2232C: default_product = "Dual RS232"; break;
2358 case TYPE_R: default_product = "FT232R USB UART"; break;
2359 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2360 case TYPE_4232H: default_product = "FT4232H"; break;
2361 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2362 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2363 default:
2364 ftdi_error_return(-3, "Unknown chip type");
2365 }
2366 eeprom->product = malloc(strlen(default_product) +1);
2367 if (eeprom->product)
2368 strcpy(eeprom->product, default_product);
2369 }
2370
2371 if (eeprom->serial)
2372 free (eeprom->serial);
2373 eeprom->serial = NULL;
2374 if (serial)
2375 {
2376 eeprom->serial = malloc(strlen(serial)+1);
2377 if (eeprom->serial)
2378 strcpy(eeprom->serial, serial);
2379 }
2380
2381 if (ftdi->type == TYPE_R)
2382 {
2383 eeprom->max_power = 90;
2384 eeprom->size = 0x80;
2385 eeprom->cbus_function[0] = CBUS_TXLED;
2386 eeprom->cbus_function[1] = CBUS_RXLED;
2387 eeprom->cbus_function[2] = CBUS_TXDEN;
2388 eeprom->cbus_function[3] = CBUS_PWREN;
2389 eeprom->cbus_function[4] = CBUS_SLEEP;
2390 }
2391 else if (ftdi->type == TYPE_230X)
2392 {
2393 eeprom->max_power = 90;
2394 eeprom->size = 0x100;
2395 eeprom->cbus_function[0] = CBUSH_TXDEN;
2396 eeprom->cbus_function[1] = CBUSH_RXLED;
2397 eeprom->cbus_function[2] = CBUSH_TXLED;
2398 eeprom->cbus_function[3] = CBUSH_SLEEP;
2399 }
2400 else
2401 {
2402 if(ftdi->type == TYPE_232H)
2403 {
2404 int i;
2405 for (i=0; i<10; i++)
2406 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2407 }
2408 eeprom->size = -1;
2409 }
2410 switch (ftdi->type)
2411 {
2412 case TYPE_AM:
2413 eeprom->release_number = 0x0200;
2414 break;
2415 case TYPE_BM:
2416 eeprom->release_number = 0x0400;
2417 break;
2418 case TYPE_2232C:
2419 eeprom->release_number = 0x0500;
2420 break;
2421 case TYPE_R:
2422 eeprom->release_number = 0x0600;
2423 break;
2424 case TYPE_2232H:
2425 eeprom->release_number = 0x0700;
2426 break;
2427 case TYPE_4232H:
2428 eeprom->release_number = 0x0800;
2429 break;
2430 case TYPE_232H:
2431 eeprom->release_number = 0x0900;
2432 break;
2433 case TYPE_230X:
2434 eeprom->release_number = 0x1000;
2435 break;
2436 default:
2437 eeprom->release_number = 0x00;
2438 }
2439 return 0;
2440}
2441
2442int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, char * manufacturer,
2443 char * product, char * serial)
2444{
2445 struct ftdi_eeprom *eeprom;
2446
2447 if (ftdi == NULL)
2448 ftdi_error_return(-1, "No struct ftdi_context");
2449
2450 if (ftdi->eeprom == NULL)
2451 ftdi_error_return(-2,"No struct ftdi_eeprom");
2452
2453 eeprom = ftdi->eeprom;
2454
2455 if (ftdi->usb_dev == NULL)
2456 ftdi_error_return(-3, "No connected device or device not yet opened");
2457
2458 if (manufacturer)
2459 {
2460 if (eeprom->manufacturer)
2461 free (eeprom->manufacturer);
2462 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2463 if (eeprom->manufacturer)
2464 strcpy(eeprom->manufacturer, manufacturer);
2465 }
2466
2467 if(product)
2468 {
2469 if (eeprom->product)
2470 free (eeprom->product);
2471 eeprom->product = malloc(strlen(product)+1);
2472 if (eeprom->product)
2473 strcpy(eeprom->product, product);
2474 }
2475
2476 if (serial)
2477 {
2478 if (eeprom->serial)
2479 free (eeprom->serial);
2480 eeprom->serial = malloc(strlen(serial)+1);
2481 if (eeprom->serial)
2482 {
2483 strcpy(eeprom->serial, serial);
2484 eeprom->use_serial = 1;
2485 }
2486 }
2487 return 0;
2488}
2489
2490
2491/*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/
2492void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2493{
2494 int i;
2495 for(i=0; i<5; i++)
2496 {
2497 int mode_low, mode_high;
2498 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2499 mode_low = CBUSH_TRISTATE;
2500 else
2501 mode_low = eeprom->cbus_function[2*i];
2502 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2503 mode_high = CBUSH_TRISTATE;
2504 else
2505 mode_high = eeprom->cbus_function[2*i+1];
2506
2507 output[0x18+i] = (mode_high <<4) | mode_low;
2508 }
2509}
2510/* Return the bits for the encoded EEPROM Structure of a requested Mode
2511 *
2512 */
2513static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2514{
2515 switch (chip)
2516 {
2517 case TYPE_2232H:
2518 case TYPE_2232C:
2519 {
2520 switch (type)
2521 {
2522 case CHANNEL_IS_UART: return 0;
2523 case CHANNEL_IS_FIFO: return 0x01;
2524 case CHANNEL_IS_OPTO: return 0x02;
2525 case CHANNEL_IS_CPU : return 0x04;
2526 default: return 0;
2527 }
2528 }
2529 case TYPE_232H:
2530 {
2531 switch (type)
2532 {
2533 case CHANNEL_IS_UART : return 0;
2534 case CHANNEL_IS_FIFO : return 0x01;
2535 case CHANNEL_IS_OPTO : return 0x02;
2536 case CHANNEL_IS_CPU : return 0x04;
2537 case CHANNEL_IS_FT1284 : return 0x08;
2538 default: return 0;
2539 }
2540 }
2541 case TYPE_230X: /* FT230X is only UART */
2542 default: return 0;
2543 }
2544 return 0;
2545}
2546
2547/**
2548 Build binary buffer from ftdi_eeprom structure.
2549 Output is suitable for ftdi_write_eeprom().
2550
2551 \param ftdi pointer to ftdi_context
2552
2553 \retval >=0: size of eeprom user area in bytes
2554 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2555 \retval -2: Invalid eeprom or ftdi pointer
2556 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2557 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2558 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2559 \retval -6: No connected EEPROM or EEPROM Type unknown
2560*/
2561int ftdi_eeprom_build(struct ftdi_context *ftdi)
2562{
2563 unsigned char i, j, eeprom_size_mask;
2564 unsigned short checksum, value;
2565 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2566 int user_area_size;
2567 struct ftdi_eeprom *eeprom;
2568 unsigned char * output;
2569
2570 if (ftdi == NULL)
2571 ftdi_error_return(-2,"No context");
2572 if (ftdi->eeprom == NULL)
2573 ftdi_error_return(-2,"No eeprom structure");
2574
2575 eeprom= ftdi->eeprom;
2576 output = eeprom->buf;
2577
2578 if (eeprom->chip == -1)
2579 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2580
2581 if (eeprom->size == -1)
2582 {
2583 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2584 eeprom->size = 0x100;
2585 else
2586 eeprom->size = 0x80;
2587 }
2588
2589 if (eeprom->manufacturer != NULL)
2590 manufacturer_size = strlen(eeprom->manufacturer);
2591 if (eeprom->product != NULL)
2592 product_size = strlen(eeprom->product);
2593 if (eeprom->serial != NULL)
2594 serial_size = strlen(eeprom->serial);
2595
2596 // eeprom size check
2597 switch (ftdi->type)
2598 {
2599 case TYPE_AM:
2600 case TYPE_BM:
2601 user_area_size = 96; // base size for strings (total of 48 characters)
2602 break;
2603 case TYPE_2232C:
2604 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2605 break;
2606 case TYPE_R:
2607 user_area_size = 96;
2608 break;
2609 case TYPE_230X:
2610 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2611 break;
2612 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2613 case TYPE_4232H:
2614 user_area_size = 86;
2615 break;
2616 case TYPE_232H:
2617 user_area_size = 80;
2618 break;
2619 default:
2620 user_area_size = 0;
2621 break;
2622 }
2623 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2624
2625 if (user_area_size < 0)
2626 ftdi_error_return(-1,"eeprom size exceeded");
2627
2628 // empty eeprom
2629 if (ftdi->type == TYPE_230X)
2630 {
2631 /* FT230X have a reserved section in the middle of the MTP,
2632 which cannot be written to, but must be included in the checksum */
2633 memset(ftdi->eeprom->buf, 0, 0x80);
2634 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
2635 }
2636 else
2637 {
2638 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2639 }
2640
2641 // Bytes and Bits set for all Types
2642
2643 // Addr 02: Vendor ID
2644 output[0x02] = eeprom->vendor_id;
2645 output[0x03] = eeprom->vendor_id >> 8;
2646
2647 // Addr 04: Product ID
2648 output[0x04] = eeprom->product_id;
2649 output[0x05] = eeprom->product_id >> 8;
2650
2651 // Addr 06: Device release number (0400h for BM features)
2652 output[0x06] = eeprom->release_number;
2653 output[0x07] = eeprom->release_number >> 8;
2654
2655 // Addr 08: Config descriptor
2656 // Bit 7: always 1
2657 // Bit 6: 1 if this device is self powered, 0 if bus powered
2658 // Bit 5: 1 if this device uses remote wakeup
2659 // Bit 4-0: reserved - 0
2660 j = 0x80;
2661 if (eeprom->self_powered)
2662 j |= 0x40;
2663 if (eeprom->remote_wakeup)
2664 j |= 0x20;
2665 output[0x08] = j;
2666
2667 // Addr 09: Max power consumption: max power = value * 2 mA
2668 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
2669
2670 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
2671 {
2672 // Addr 0A: Chip configuration
2673 // Bit 7: 0 - reserved
2674 // Bit 6: 0 - reserved
2675 // Bit 5: 0 - reserved
2676 // Bit 4: 1 - Change USB version
2677 // Bit 3: 1 - Use the serial number string
2678 // Bit 2: 1 - Enable suspend pull downs for lower power
2679 // Bit 1: 1 - Out EndPoint is Isochronous
2680 // Bit 0: 1 - In EndPoint is Isochronous
2681 //
2682 j = 0;
2683 if (eeprom->in_is_isochronous)
2684 j = j | 1;
2685 if (eeprom->out_is_isochronous)
2686 j = j | 2;
2687 output[0x0A] = j;
2688 }
2689
2690 // Dynamic content
2691 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2692 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2693 // 0xa0 (TYPE_232H)
2694 i = 0;
2695 switch (ftdi->type)
2696 {
2697 case TYPE_2232H:
2698 case TYPE_4232H:
2699 i += 2;
2700 case TYPE_R:
2701 i += 2;
2702 case TYPE_2232C:
2703 i += 2;
2704 case TYPE_AM:
2705 case TYPE_BM:
2706 i += 0x94;
2707 break;
2708 case TYPE_232H:
2709 case TYPE_230X:
2710 i = 0xa0;
2711 break;
2712 }
2713 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2714 eeprom_size_mask = eeprom->size -1;
2715
2716 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2717 // Addr 0F: Length of manufacturer string
2718 // Output manufacturer
2719 output[0x0E] = i; // calculate offset
2720 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2721 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2722 for (j = 0; j < manufacturer_size; j++)
2723 {
2724 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2725 output[i & eeprom_size_mask] = 0x00, i++;
2726 }
2727 output[0x0F] = manufacturer_size*2 + 2;
2728
2729 // Addr 10: Offset of the product string + 0x80, calculated later
2730 // Addr 11: Length of product string
2731 output[0x10] = i | 0x80; // calculate offset
2732 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2733 output[i & eeprom_size_mask] = 0x03, i++;
2734 for (j = 0; j < product_size; j++)
2735 {
2736 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2737 output[i & eeprom_size_mask] = 0x00, i++;
2738 }
2739 output[0x11] = product_size*2 + 2;
2740
2741 // Addr 12: Offset of the serial string + 0x80, calculated later
2742 // Addr 13: Length of serial string
2743 output[0x12] = i | 0x80; // calculate offset
2744 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2745 output[i & eeprom_size_mask] = 0x03, i++;
2746 for (j = 0; j < serial_size; j++)
2747 {
2748 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2749 output[i & eeprom_size_mask] = 0x00, i++;
2750 }
2751
2752 // Legacy port name and PnP fields for FT2232 and newer chips
2753 if (ftdi->type > TYPE_BM)
2754 {
2755 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2756 i++;
2757 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2758 i++;
2759 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2760 i++;
2761 }
2762
2763 output[0x13] = serial_size*2 + 2;
2764
2765 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2766 {
2767 if (eeprom->use_serial)
2768 output[0x0A] |= USE_SERIAL_NUM;
2769 else
2770 output[0x0A] &= ~USE_SERIAL_NUM;
2771 }
2772
2773 /* Bytes and Bits specific to (some) types
2774 Write linear, as this allows easier fixing*/
2775 switch (ftdi->type)
2776 {
2777 case TYPE_AM:
2778 break;
2779 case TYPE_BM:
2780 output[0x0C] = eeprom->usb_version & 0xff;
2781 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2782 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2783 output[0x0A] |= USE_USB_VERSION_BIT;
2784 else
2785 output[0x0A] &= ~USE_USB_VERSION_BIT;
2786
2787 break;
2788 case TYPE_2232C:
2789
2790 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
2791 if ( eeprom->channel_a_driver == DRIVER_VCP)
2792 output[0x00] |= DRIVER_VCP;
2793 else
2794 output[0x00] &= ~DRIVER_VCP;
2795
2796 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2797 output[0x00] |= HIGH_CURRENT_DRIVE;
2798 else
2799 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2800
2801 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
2802 if ( eeprom->channel_b_driver == DRIVER_VCP)
2803 output[0x01] |= DRIVER_VCP;
2804 else
2805 output[0x01] &= ~DRIVER_VCP;
2806
2807 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2808 output[0x01] |= HIGH_CURRENT_DRIVE;
2809 else
2810 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2811
2812 if (eeprom->in_is_isochronous)
2813 output[0x0A] |= 0x1;
2814 else
2815 output[0x0A] &= ~0x1;
2816 if (eeprom->out_is_isochronous)
2817 output[0x0A] |= 0x2;
2818 else
2819 output[0x0A] &= ~0x2;
2820 if (eeprom->suspend_pull_downs)
2821 output[0x0A] |= 0x4;
2822 else
2823 output[0x0A] &= ~0x4;
2824 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2825 output[0x0A] |= USE_USB_VERSION_BIT;
2826 else
2827 output[0x0A] &= ~USE_USB_VERSION_BIT;
2828
2829 output[0x0C] = eeprom->usb_version & 0xff;
2830 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2831 output[0x14] = eeprom->chip;
2832 break;
2833 case TYPE_R:
2834 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2835 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2836 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2837
2838 if (eeprom->suspend_pull_downs)
2839 output[0x0A] |= 0x4;
2840 else
2841 output[0x0A] &= ~0x4;
2842 output[0x0B] = eeprom->invert;
2843 output[0x0C] = eeprom->usb_version & 0xff;
2844 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2845
2846 if (eeprom->cbus_function[0] > CBUS_BB)
2847 output[0x14] = CBUS_TXLED;
2848 else
2849 output[0x14] = eeprom->cbus_function[0];
2850
2851 if (eeprom->cbus_function[1] > CBUS_BB)
2852 output[0x14] |= CBUS_RXLED<<4;
2853 else
2854 output[0x14] |= eeprom->cbus_function[1]<<4;
2855
2856 if (eeprom->cbus_function[2] > CBUS_BB)
2857 output[0x15] = CBUS_TXDEN;
2858 else
2859 output[0x15] = eeprom->cbus_function[2];
2860
2861 if (eeprom->cbus_function[3] > CBUS_BB)
2862 output[0x15] |= CBUS_PWREN<<4;
2863 else
2864 output[0x15] |= eeprom->cbus_function[3]<<4;
2865
2866 if (eeprom->cbus_function[4] > CBUS_CLK6)
2867 output[0x16] = CBUS_SLEEP;
2868 else
2869 output[0x16] = eeprom->cbus_function[4];
2870 break;
2871 case TYPE_2232H:
2872 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
2873 if ( eeprom->channel_a_driver == DRIVER_VCP)
2874 output[0x00] |= DRIVER_VCP;
2875 else
2876 output[0x00] &= ~DRIVER_VCP;
2877
2878 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
2879 if ( eeprom->channel_b_driver == DRIVER_VCP)
2880 output[0x01] |= DRIVER_VCP;
2881 else
2882 output[0x01] &= ~DRIVER_VCP;
2883 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2884 output[0x01] |= SUSPEND_DBUS7_BIT;
2885 else
2886 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2887
2888 if (eeprom->suspend_pull_downs)
2889 output[0x0A] |= 0x4;
2890 else
2891 output[0x0A] &= ~0x4;
2892
2893 if (eeprom->group0_drive > DRIVE_16MA)
2894 output[0x0c] |= DRIVE_16MA;
2895 else
2896 output[0x0c] |= eeprom->group0_drive;
2897 if (eeprom->group0_schmitt == IS_SCHMITT)
2898 output[0x0c] |= IS_SCHMITT;
2899 if (eeprom->group0_slew == SLOW_SLEW)
2900 output[0x0c] |= SLOW_SLEW;
2901
2902 if (eeprom->group1_drive > DRIVE_16MA)
2903 output[0x0c] |= DRIVE_16MA<<4;
2904 else
2905 output[0x0c] |= eeprom->group1_drive<<4;
2906 if (eeprom->group1_schmitt == IS_SCHMITT)
2907 output[0x0c] |= IS_SCHMITT<<4;
2908 if (eeprom->group1_slew == SLOW_SLEW)
2909 output[0x0c] |= SLOW_SLEW<<4;
2910
2911 if (eeprom->group2_drive > DRIVE_16MA)
2912 output[0x0d] |= DRIVE_16MA;
2913 else
2914 output[0x0d] |= eeprom->group2_drive;
2915 if (eeprom->group2_schmitt == IS_SCHMITT)
2916 output[0x0d] |= IS_SCHMITT;
2917 if (eeprom->group2_slew == SLOW_SLEW)
2918 output[0x0d] |= SLOW_SLEW;
2919
2920 if (eeprom->group3_drive > DRIVE_16MA)
2921 output[0x0d] |= DRIVE_16MA<<4;
2922 else
2923 output[0x0d] |= eeprom->group3_drive<<4;
2924 if (eeprom->group3_schmitt == IS_SCHMITT)
2925 output[0x0d] |= IS_SCHMITT<<4;
2926 if (eeprom->group3_slew == SLOW_SLEW)
2927 output[0x0d] |= SLOW_SLEW<<4;
2928
2929 output[0x18] = eeprom->chip;
2930
2931 break;
2932 case TYPE_4232H:
2933 if (eeprom->channel_a_driver == DRIVER_VCP)
2934 output[0x00] |= DRIVER_VCP;
2935 else
2936 output[0x00] &= ~DRIVER_VCP;
2937 if (eeprom->channel_b_driver == DRIVER_VCP)
2938 output[0x01] |= DRIVER_VCP;
2939 else
2940 output[0x01] &= ~DRIVER_VCP;
2941 if (eeprom->channel_c_driver == DRIVER_VCP)
2942 output[0x00] |= (DRIVER_VCP << 4);
2943 else
2944 output[0x00] &= ~(DRIVER_VCP << 4);
2945 if (eeprom->channel_d_driver == DRIVER_VCP)
2946 output[0x01] |= (DRIVER_VCP << 4);
2947 else
2948 output[0x01] &= ~(DRIVER_VCP << 4);
2949
2950 if (eeprom->suspend_pull_downs)
2951 output[0x0a] |= 0x4;
2952 else
2953 output[0x0a] &= ~0x4;
2954
2955 if (eeprom->channel_a_rs485enable)
2956 output[0x0b] |= CHANNEL_IS_RS485 << 0;
2957 else
2958 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
2959 if (eeprom->channel_b_rs485enable)
2960 output[0x0b] |= CHANNEL_IS_RS485 << 1;
2961 else
2962 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
2963 if (eeprom->channel_c_rs485enable)
2964 output[0x0b] |= CHANNEL_IS_RS485 << 2;
2965 else
2966 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
2967 if (eeprom->channel_d_rs485enable)
2968 output[0x0b] |= CHANNEL_IS_RS485 << 3;
2969 else
2970 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
2971
2972 if (eeprom->group0_drive > DRIVE_16MA)
2973 output[0x0c] |= DRIVE_16MA;
2974 else
2975 output[0x0c] |= eeprom->group0_drive;
2976 if (eeprom->group0_schmitt == IS_SCHMITT)
2977 output[0x0c] |= IS_SCHMITT;
2978 if (eeprom->group0_slew == SLOW_SLEW)
2979 output[0x0c] |= SLOW_SLEW;
2980
2981 if (eeprom->group1_drive > DRIVE_16MA)
2982 output[0x0c] |= DRIVE_16MA<<4;
2983 else
2984 output[0x0c] |= eeprom->group1_drive<<4;
2985 if (eeprom->group1_schmitt == IS_SCHMITT)
2986 output[0x0c] |= IS_SCHMITT<<4;
2987 if (eeprom->group1_slew == SLOW_SLEW)
2988 output[0x0c] |= SLOW_SLEW<<4;
2989
2990 if (eeprom->group2_drive > DRIVE_16MA)
2991 output[0x0d] |= DRIVE_16MA;
2992 else
2993 output[0x0d] |= eeprom->group2_drive;
2994 if (eeprom->group2_schmitt == IS_SCHMITT)
2995 output[0x0d] |= IS_SCHMITT;
2996 if (eeprom->group2_slew == SLOW_SLEW)
2997 output[0x0d] |= SLOW_SLEW;
2998
2999 if (eeprom->group3_drive > DRIVE_16MA)
3000 output[0x0d] |= DRIVE_16MA<<4;
3001 else
3002 output[0x0d] |= eeprom->group3_drive<<4;
3003 if (eeprom->group3_schmitt == IS_SCHMITT)
3004 output[0x0d] |= IS_SCHMITT<<4;
3005 if (eeprom->group3_slew == SLOW_SLEW)
3006 output[0x0d] |= SLOW_SLEW<<4;
3007
3008 output[0x18] = eeprom->chip;
3009
3010 break;
3011 case TYPE_232H:
3012 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3013 if ( eeprom->channel_a_driver == DRIVER_VCP)
3014 output[0x00] |= DRIVER_VCPH;
3015 else
3016 output[0x00] &= ~DRIVER_VCPH;
3017 if (eeprom->powersave)
3018 output[0x01] |= POWER_SAVE_DISABLE_H;
3019 else
3020 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3021
3022 if (eeprom->suspend_pull_downs)
3023 output[0x0a] |= 0x4;
3024 else
3025 output[0x0a] &= ~0x4;
3026
3027 if (eeprom->clock_polarity)
3028 output[0x01] |= FT1284_CLK_IDLE_STATE;
3029 else
3030 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3031 if (eeprom->data_order)
3032 output[0x01] |= FT1284_DATA_LSB;
3033 else
3034 output[0x01] &= ~FT1284_DATA_LSB;
3035 if (eeprom->flow_control)
3036 output[0x01] |= FT1284_FLOW_CONTROL;
3037 else
3038 output[0x01] &= ~FT1284_FLOW_CONTROL;
3039 if (eeprom->group0_drive > DRIVE_16MA)
3040 output[0x0c] |= DRIVE_16MA;
3041 else
3042 output[0x0c] |= eeprom->group0_drive;
3043 if (eeprom->group0_schmitt == IS_SCHMITT)
3044 output[0x0c] |= IS_SCHMITT;
3045 if (eeprom->group0_slew == SLOW_SLEW)
3046 output[0x0c] |= SLOW_SLEW;
3047
3048 if (eeprom->group1_drive > DRIVE_16MA)
3049 output[0x0d] |= DRIVE_16MA;
3050 else
3051 output[0x0d] |= eeprom->group1_drive;
3052 if (eeprom->group1_schmitt == IS_SCHMITT)
3053 output[0x0d] |= IS_SCHMITT;
3054 if (eeprom->group1_slew == SLOW_SLEW)
3055 output[0x0d] |= SLOW_SLEW;
3056
3057 set_ft232h_cbus(eeprom, output);
3058
3059 output[0x1e] = eeprom->chip;
3060 fprintf(stderr,"FIXME: Build FT232H specific EEPROM settings\n");
3061 break;
3062 case TYPE_230X:
3063 output[0x00] = 0x80; /* Actually, leave the default value */
3064 output[0x0a] = 0x08; /* Enable USB Serial Number */
3065 /*FIXME: Make DBUS & CBUS Control configurable*/
3066 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4 mA like factory default */
3067 for (j = 0; j <= 6; j++)
3068 {
3069 output[0x1a + j] = eeprom->cbus_function[j];
3070 }
3071 output[0x0b] = eeprom->invert;
3072 break;
3073 }
3074
3075 // calculate checksum
3076 checksum = 0xAAAA;
3077
3078 for (i = 0; i < eeprom->size/2-1; i++)
3079 {
3080 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3081 {
3082 /* FT230X has a user section in the MTP which is not part of the checksum */
3083 i = 0x40;
3084 }
3085 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3086 uint16_t data;
3087 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3088 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3089 i = 0x50;
3090 }
3091 value = data;
3092 }
3093 else {
3094 value = output[i*2];
3095 value += output[(i*2)+1] << 8;
3096 }
3097 checksum = value^checksum;
3098 checksum = (checksum << 1) | (checksum >> 15);
3099 }
3100
3101 output[eeprom->size-2] = checksum;
3102 output[eeprom->size-1] = checksum >> 8;
3103
3104 eeprom->initialized_for_connected_device = 1;
3105 return user_area_size;
3106}
3107/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3108 * EEPROM structure
3109 *
3110 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3111 */
3112static unsigned char bit2type(unsigned char bits)
3113{
3114 switch (bits)
3115 {
3116 case 0: return CHANNEL_IS_UART;
3117 case 1: return CHANNEL_IS_FIFO;
3118 case 2: return CHANNEL_IS_OPTO;
3119 case 4: return CHANNEL_IS_CPU;
3120 case 8: return CHANNEL_IS_FT1284;
3121 default:
3122 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3123 bits);
3124 }
3125 return 0;
3126}
3127/* Decode 230X / 232R type chips invert bits
3128 * Prints directly to stdout.
3129*/
3130static void print_inverted_bits(int invert)
3131{
3132 char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3133 int i;
3134
3135 fprintf(stdout,"Inverted bits:");
3136 for (i=0; i<8; i++)
3137 if ((invert & (1<<i)) == (1<<i))
3138 fprintf(stdout," %s",r_bits[i]);
3139
3140 fprintf(stdout,"\n");
3141}
3142/**
3143 Decode binary EEPROM image into an ftdi_eeprom structure.
3144
3145 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3146
3147 \param ftdi pointer to ftdi_context
3148 \param verbose Decode EEPROM on stdout
3149
3150 \retval 0: all fine
3151 \retval -1: something went wrong
3152
3153 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3154 FIXME: Strings are malloc'ed here and should be freed somewhere
3155*/
3156int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3157{
3158 int i, j;
3159 unsigned short checksum, eeprom_checksum, value;
3160 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3161 int eeprom_size;
3162 struct ftdi_eeprom *eeprom;
3163 unsigned char *buf = NULL;
3164
3165 if (ftdi == NULL)
3166 ftdi_error_return(-1,"No context");
3167 if (ftdi->eeprom == NULL)
3168 ftdi_error_return(-1,"No eeprom structure");
3169
3170 eeprom = ftdi->eeprom;
3171 eeprom_size = eeprom->size;
3172 buf = ftdi->eeprom->buf;
3173
3174 // Addr 02: Vendor ID
3175 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3176
3177 // Addr 04: Product ID
3178 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3179
3180 // Addr 06: Device release number
3181 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3182
3183 // Addr 08: Config descriptor
3184 // Bit 7: always 1
3185 // Bit 6: 1 if this device is self powered, 0 if bus powered
3186 // Bit 5: 1 if this device uses remote wakeup
3187 eeprom->self_powered = buf[0x08] & 0x40;
3188 eeprom->remote_wakeup = buf[0x08] & 0x20;
3189
3190 // Addr 09: Max power consumption: max power = value * 2 mA
3191 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3192
3193 // Addr 0A: Chip configuration
3194 // Bit 7: 0 - reserved
3195 // Bit 6: 0 - reserved
3196 // Bit 5: 0 - reserved
3197 // Bit 4: 1 - Change USB version on BM and 2232C
3198 // Bit 3: 1 - Use the serial number string
3199 // Bit 2: 1 - Enable suspend pull downs for lower power
3200 // Bit 1: 1 - Out EndPoint is Isochronous
3201 // Bit 0: 1 - In EndPoint is Isochronous
3202 //
3203 eeprom->in_is_isochronous = buf[0x0A]&0x01;
3204 eeprom->out_is_isochronous = buf[0x0A]&0x02;
3205 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
3206 eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0;
3207 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
3208
3209 // Addr 0C: USB version low byte when 0x0A
3210 // Addr 0D: USB version high byte when 0x0A
3211 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3212
3213 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3214 // Addr 0F: Length of manufacturer string
3215 manufacturer_size = buf[0x0F]/2;
3216 if (eeprom->manufacturer)
3217 free(eeprom->manufacturer);
3218 if (manufacturer_size > 0)
3219 {
3220 eeprom->manufacturer = malloc(manufacturer_size);
3221 if (eeprom->manufacturer)
3222 {
3223 // Decode manufacturer
3224 i = buf[0x0E] & (eeprom_size -1); // offset
3225 for (j=0; j<manufacturer_size-1; j++)
3226 {
3227 eeprom->manufacturer[j] = buf[2*j+i+2];
3228 }
3229 eeprom->manufacturer[j] = '\0';
3230 }
3231 }
3232 else eeprom->manufacturer = NULL;
3233
3234 // Addr 10: Offset of the product string + 0x80, calculated later
3235 // Addr 11: Length of product string
3236 if (eeprom->product)
3237 free(eeprom->product);
3238 product_size = buf[0x11]/2;
3239 if (product_size > 0)
3240 {
3241 eeprom->product = malloc(product_size);
3242 if (eeprom->product)
3243 {
3244 // Decode product name
3245 i = buf[0x10] & (eeprom_size -1); // offset
3246 for (j=0; j<product_size-1; j++)
3247 {
3248 eeprom->product[j] = buf[2*j+i+2];
3249 }
3250 eeprom->product[j] = '\0';
3251 }
3252 }
3253 else eeprom->product = NULL;
3254
3255 // Addr 12: Offset of the serial string + 0x80, calculated later
3256 // Addr 13: Length of serial string
3257 if (eeprom->serial)
3258 free(eeprom->serial);
3259 serial_size = buf[0x13]/2;
3260 if (serial_size > 0)
3261 {
3262 eeprom->serial = malloc(serial_size);
3263 if (eeprom->serial)
3264 {
3265 // Decode serial
3266 i = buf[0x12] & (eeprom_size -1); // offset
3267 for (j=0; j<serial_size-1; j++)
3268 {
3269 eeprom->serial[j] = buf[2*j+i+2];
3270 }
3271 eeprom->serial[j] = '\0';
3272 }
3273 }
3274 else eeprom->serial = NULL;
3275
3276 // verify checksum
3277 checksum = 0xAAAA;
3278
3279 for (i = 0; i < eeprom_size/2-1; i++)
3280 {
3281 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3282 {
3283 /* FT230X has a user section in the MTP which is not part of the checksum */
3284 i = 0x40;
3285 }
3286 value = buf[i*2];
3287 value += buf[(i*2)+1] << 8;
3288
3289 checksum = value^checksum;
3290 checksum = (checksum << 1) | (checksum >> 15);
3291 }
3292
3293 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3294
3295 if (eeprom_checksum != checksum)
3296 {
3297 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3298 ftdi_error_return(-1,"EEPROM checksum error");
3299 }
3300
3301 eeprom->channel_a_type = 0;
3302 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3303 {
3304 eeprom->chip = -1;
3305 }
3306 else if (ftdi->type == TYPE_2232C)
3307 {
3308 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3309 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3310 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
3311 eeprom->channel_b_type = buf[0x01] & 0x7;
3312 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3313 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
3314 eeprom->chip = buf[0x14];
3315 }
3316 else if (ftdi->type == TYPE_R)
3317 {
3318 /* TYPE_R flags D2XX, not VCP as all others*/
3319 eeprom->channel_a_driver = ~buf[0x00] & DRIVER_VCP;
3320 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
3321 if ( (buf[0x01]&0x40) != 0x40)
3322 fprintf(stderr,
3323 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3324 " If this happened with the\n"
3325 " EEPROM programmed by FTDI tools, please report "
3326 "to libftdi@developer.intra2net.com\n");
3327
3328 eeprom->chip = buf[0x16];
3329 // Addr 0B: Invert data lines
3330 // Works only on FT232R, not FT245R, but no way to distinguish
3331 eeprom->invert = buf[0x0B];
3332 // Addr 14: CBUS function: CBUS0, CBUS1
3333 // Addr 15: CBUS function: CBUS2, CBUS3
3334 // Addr 16: CBUS function: CBUS5
3335 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3336 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3337 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3338 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3339 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3340 }
3341 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3342 {
3343 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
3344 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
3345
3346 if (ftdi->type == TYPE_2232H)
3347 {
3348 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3349 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3350 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
3351 }
3352 else
3353 {
3354 eeprom->channel_c_driver = (buf[0x00] >> 4) & DRIVER_VCP;
3355 eeprom->channel_d_driver = (buf[0x01] >> 4) & DRIVER_VCP;
3356 eeprom->channel_a_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 0);
3357 eeprom->channel_b_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 1);
3358 eeprom->channel_c_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 2);
3359 eeprom->channel_d_rs485enable = buf[0x0b] & (CHANNEL_IS_RS485 << 3);
3360 }
3361
3362 eeprom->chip = buf[0x18];
3363 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3364 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3365 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3366 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
3367 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3368 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3369 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
3370 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
3371 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
3372 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
3373 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
3374 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
3375 }
3376 else if (ftdi->type == TYPE_232H)
3377 {
3378 eeprom->channel_a_type = buf[0x00] & 0xf;
3379 eeprom->channel_a_driver = (buf[0x00] & DRIVER_VCPH)?DRIVER_VCP:0;
3380 eeprom->clock_polarity = buf[0x01] & FT1284_CLK_IDLE_STATE;
3381 eeprom->data_order = buf[0x01] & FT1284_DATA_LSB;
3382 eeprom->flow_control = buf[0x01] & FT1284_FLOW_CONTROL;
3383 eeprom->powersave = buf[0x01] & POWER_SAVE_DISABLE_H;
3384 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
3385 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3386 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3387 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA;
3388 eeprom->group1_schmitt = buf[0x0d] & IS_SCHMITT;
3389 eeprom->group1_slew = buf[0x0d] & SLOW_SLEW;
3390
3391 for(i=0; i<5; i++)
3392 {
3393 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3394 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3395 }
3396 eeprom->chip = buf[0x1e];
3397 /*FIXME: Decipher more values*/
3398 }
3399 else if (ftdi->type == TYPE_230X)
3400 {
3401 for(i=0; i<4; i++)
3402 {
3403 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3404 }
3405 eeprom->group0_drive = buf[0x0c] & 0x03;
3406 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
3407 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
3408 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x03;
3409 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
3410 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
3411
3412 eeprom->invert = buf[0xb];
3413 }
3414
3415 if (verbose)
3416 {
3417 char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3418 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3419 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3420 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3421
3422 if (eeprom->self_powered)
3423 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3424 else
3425 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3426 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3427 if (eeprom->manufacturer)
3428 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3429 if (eeprom->product)
3430 fprintf(stdout, "Product: %s\n",eeprom->product);
3431 if (eeprom->serial)
3432 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3433 fprintf(stdout, "Checksum : %04x\n", checksum);
3434 if (ftdi->type == TYPE_R)
3435 fprintf(stdout, "Internal EEPROM\n");
3436 else if (eeprom->chip >= 0x46)
3437 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3438 if (eeprom->suspend_dbus7)
3439 fprintf(stdout, "Suspend on DBUS7\n");
3440 if (eeprom->suspend_pull_downs)
3441 fprintf(stdout, "Pull IO pins low during suspend\n");
3442 if(eeprom->powersave)
3443 {
3444 if(ftdi->type >= TYPE_232H)
3445 fprintf(stdout,"Enter low power state on ACBUS7\n");
3446 }
3447 if (eeprom->remote_wakeup)
3448 fprintf(stdout, "Enable Remote Wake Up\n");
3449 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3450 if (ftdi->type >= TYPE_2232C)
3451 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3452 channel_mode[eeprom->channel_a_type],
3453 (eeprom->channel_a_driver)?" VCP":"",
3454 (eeprom->high_current_a)?" High Current IO":"");
3455 if (ftdi->type == TYPE_232H)
3456 {
3457 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3458 (eeprom->clock_polarity)?"HIGH":"LOW",
3459 (eeprom->data_order)?"LSB":"MSB",
3460 (eeprom->flow_control)?"":"No ");
3461 }
3462 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3463 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3464 channel_mode[eeprom->channel_b_type],
3465 (eeprom->channel_b_driver)?" VCP":"",
3466 (eeprom->high_current_b)?" High Current IO":"");
3467 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3468 eeprom->use_usb_version == USE_USB_VERSION_BIT)
3469 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3470
3471 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3472 {
3473 fprintf(stdout,"%s has %d mA drive%s%s\n",
3474 (ftdi->type == TYPE_2232H)?"AL":"A",
3475 (eeprom->group0_drive+1) *4,
3476 (eeprom->group0_schmitt)?" Schmitt Input":"",
3477 (eeprom->group0_slew)?" Slow Slew":"");
3478 fprintf(stdout,"%s has %d mA drive%s%s\n",
3479 (ftdi->type == TYPE_2232H)?"AH":"B",
3480 (eeprom->group1_drive+1) *4,
3481 (eeprom->group1_schmitt)?" Schmitt Input":"",
3482 (eeprom->group1_slew)?" Slow Slew":"");
3483 fprintf(stdout,"%s has %d mA drive%s%s\n",
3484 (ftdi->type == TYPE_2232H)?"BL":"C",
3485 (eeprom->group2_drive+1) *4,
3486 (eeprom->group2_schmitt)?" Schmitt Input":"",
3487 (eeprom->group2_slew)?" Slow Slew":"");
3488 fprintf(stdout,"%s has %d mA drive%s%s\n",
3489 (ftdi->type == TYPE_2232H)?"BH":"D",
3490 (eeprom->group3_drive+1) *4,
3491 (eeprom->group3_schmitt)?" Schmitt Input":"",
3492 (eeprom->group3_slew)?" Slow Slew":"");
3493 }
3494 else if (ftdi->type == TYPE_232H)
3495 {
3496 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3497 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3498 "CLK30","CLK15","CLK7_5"
3499 };
3500 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3501 (eeprom->group0_drive+1) *4,
3502 (eeprom->group0_schmitt)?" Schmitt Input":"",
3503 (eeprom->group0_slew)?" Slow Slew":"");
3504 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3505 (eeprom->group1_drive+1) *4,
3506 (eeprom->group1_schmitt)?" Schmitt Input":"",
3507 (eeprom->group1_slew)?" Slow Slew":"");
3508 for (i=0; i<10; i++)
3509 {
3510 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3511 fprintf(stdout,"C%d Function: %s\n", i,
3512 cbush_mux[eeprom->cbus_function[i]]);
3513 }
3514 }
3515 else if (ftdi->type == TYPE_230X)
3516 {
3517 char *cbush_mux[] = {"TRISTATE","RXLED","TXLED", "TXRXLED","PWREN",
3518 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3519 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3520 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3521 "BBRD#", "TIME_STAMP", "AWAKE#",
3522 };
3523 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3524 (eeprom->group0_drive+1) *4,
3525 (eeprom->group0_schmitt)?" Schmitt Input":"",
3526 (eeprom->group0_slew)?" Slow Slew":"");
3527 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3528 (eeprom->group1_drive+1) *4,
3529 (eeprom->group1_schmitt)?" Schmitt Input":"",
3530 (eeprom->group1_slew)?" Slow Slew":"");
3531 for (i=0; i<4; i++)
3532 {
3533 if (eeprom->cbus_function[i]<= CBUSH_AWAKE)
3534 fprintf(stdout,"CBUS%d Function: %s\n", i, cbush_mux[eeprom->cbus_function[i]]);
3535 }
3536
3537 if (eeprom->invert)
3538 print_inverted_bits(eeprom->invert);
3539 }
3540
3541 if (ftdi->type == TYPE_R)
3542 {
3543 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3544 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3545 "IOMODE","BB_WR","BB_RD"
3546 };
3547 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3548
3549 if (eeprom->invert)
3550 print_inverted_bits(eeprom->invert);
3551
3552 for (i=0; i<5; i++)
3553 {
3554 if (eeprom->cbus_function[i]<CBUS_BB)
3555 fprintf(stdout,"C%d Function: %s\n", i,
3556 cbus_mux[eeprom->cbus_function[i]]);
3557 else
3558 {
3559 if (i < 4)
3560 /* Running MPROG show that C0..3 have fixed function Synchronous
3561 Bit Bang mode */
3562 fprintf(stdout,"C%d BB Function: %s\n", i,
3563 cbus_BB[i]);
3564 else
3565 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
3566 }
3567 }
3568 }
3569 }
3570 return 0;
3571}
3572
3573/**
3574 Get a value from the decoded EEPROM structure
3575
3576 \param ftdi pointer to ftdi_context
3577 \param value_name Enum of the value to query
3578 \param value Pointer to store read value
3579
3580 \retval 0: all fine
3581 \retval -1: Value doesn't exist
3582*/
3583int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
3584{
3585 switch (value_name)
3586 {
3587 case VENDOR_ID:
3588 *value = ftdi->eeprom->vendor_id;
3589 break;
3590 case PRODUCT_ID:
3591 *value = ftdi->eeprom->product_id;
3592 break;
3593 case RELEASE_NUMBER:
3594 *value = ftdi->eeprom->release_number;
3595 break;
3596 case SELF_POWERED:
3597 *value = ftdi->eeprom->self_powered;
3598 break;
3599 case REMOTE_WAKEUP:
3600 *value = ftdi->eeprom->remote_wakeup;
3601 break;
3602 case IS_NOT_PNP:
3603 *value = ftdi->eeprom->is_not_pnp;
3604 break;
3605 case SUSPEND_DBUS7:
3606 *value = ftdi->eeprom->suspend_dbus7;
3607 break;
3608 case IN_IS_ISOCHRONOUS:
3609 *value = ftdi->eeprom->in_is_isochronous;
3610 break;
3611 case OUT_IS_ISOCHRONOUS:
3612 *value = ftdi->eeprom->out_is_isochronous;
3613 break;
3614 case SUSPEND_PULL_DOWNS:
3615 *value = ftdi->eeprom->suspend_pull_downs;
3616 break;
3617 case USE_SERIAL:
3618 *value = ftdi->eeprom->use_serial;
3619 break;
3620 case USB_VERSION:
3621 *value = ftdi->eeprom->usb_version;
3622 break;
3623 case USE_USB_VERSION:
3624 *value = ftdi->eeprom->use_usb_version;
3625 break;
3626 case MAX_POWER:
3627 *value = ftdi->eeprom->max_power;
3628 break;
3629 case CHANNEL_A_TYPE:
3630 *value = ftdi->eeprom->channel_a_type;
3631 break;
3632 case CHANNEL_B_TYPE:
3633 *value = ftdi->eeprom->channel_b_type;
3634 break;
3635 case CHANNEL_A_DRIVER:
3636 *value = ftdi->eeprom->channel_a_driver;
3637 break;
3638 case CHANNEL_B_DRIVER:
3639 *value = ftdi->eeprom->channel_b_driver;
3640 break;
3641 case CHANNEL_C_DRIVER:
3642 *value = ftdi->eeprom->channel_c_driver;
3643 break;
3644 case CHANNEL_D_DRIVER:
3645 *value = ftdi->eeprom->channel_d_driver;
3646 break;
3647 case CHANNEL_A_RS485:
3648 *value = ftdi->eeprom->channel_a_rs485enable;
3649 break;
3650 case CHANNEL_B_RS485:
3651 *value = ftdi->eeprom->channel_b_rs485enable;
3652 break;
3653 case CHANNEL_C_RS485:
3654 *value = ftdi->eeprom->channel_c_rs485enable;
3655 break;
3656 case CHANNEL_D_RS485:
3657 *value = ftdi->eeprom->channel_d_rs485enable;
3658 break;
3659 case CBUS_FUNCTION_0:
3660 *value = ftdi->eeprom->cbus_function[0];
3661 break;
3662 case CBUS_FUNCTION_1:
3663 *value = ftdi->eeprom->cbus_function[1];
3664 break;
3665 case CBUS_FUNCTION_2:
3666 *value = ftdi->eeprom->cbus_function[2];
3667 break;
3668 case CBUS_FUNCTION_3:
3669 *value = ftdi->eeprom->cbus_function[3];
3670 break;
3671 case CBUS_FUNCTION_4:
3672 *value = ftdi->eeprom->cbus_function[4];
3673 break;
3674 case CBUS_FUNCTION_5:
3675 *value = ftdi->eeprom->cbus_function[5];
3676 break;
3677 case CBUS_FUNCTION_6:
3678 *value = ftdi->eeprom->cbus_function[6];
3679 break;
3680 case CBUS_FUNCTION_7:
3681 *value = ftdi->eeprom->cbus_function[7];
3682 break;
3683 case CBUS_FUNCTION_8:
3684 *value = ftdi->eeprom->cbus_function[8];
3685 break;
3686 case CBUS_FUNCTION_9:
3687 *value = ftdi->eeprom->cbus_function[8];
3688 break;
3689 case HIGH_CURRENT:
3690 *value = ftdi->eeprom->high_current;
3691 break;
3692 case HIGH_CURRENT_A:
3693 *value = ftdi->eeprom->high_current_a;
3694 break;
3695 case HIGH_CURRENT_B:
3696 *value = ftdi->eeprom->high_current_b;
3697 break;
3698 case INVERT:
3699 *value = ftdi->eeprom->invert;
3700 break;
3701 case GROUP0_DRIVE:
3702 *value = ftdi->eeprom->group0_drive;
3703 break;
3704 case GROUP0_SCHMITT:
3705 *value = ftdi->eeprom->group0_schmitt;
3706 break;
3707 case GROUP0_SLEW:
3708 *value = ftdi->eeprom->group0_slew;
3709 break;
3710 case GROUP1_DRIVE:
3711 *value = ftdi->eeprom->group1_drive;
3712 break;
3713 case GROUP1_SCHMITT:
3714 *value = ftdi->eeprom->group1_schmitt;
3715 break;
3716 case GROUP1_SLEW:
3717 *value = ftdi->eeprom->group1_slew;
3718 break;
3719 case GROUP2_DRIVE:
3720 *value = ftdi->eeprom->group2_drive;
3721 break;
3722 case GROUP2_SCHMITT:
3723 *value = ftdi->eeprom->group2_schmitt;
3724 break;
3725 case GROUP2_SLEW:
3726 *value = ftdi->eeprom->group2_slew;
3727 break;
3728 case GROUP3_DRIVE:
3729 *value = ftdi->eeprom->group3_drive;
3730 break;
3731 case GROUP3_SCHMITT:
3732 *value = ftdi->eeprom->group3_schmitt;
3733 break;
3734 case GROUP3_SLEW:
3735 *value = ftdi->eeprom->group3_slew;
3736 break;
3737 case POWER_SAVE:
3738 *value = ftdi->eeprom->powersave;
3739 break;
3740 case CLOCK_POLARITY:
3741 *value = ftdi->eeprom->clock_polarity;
3742 break;
3743 case DATA_ORDER:
3744 *value = ftdi->eeprom->data_order;
3745 break;
3746 case FLOW_CONTROL:
3747 *value = ftdi->eeprom->flow_control;
3748 break;
3749 case CHIP_TYPE:
3750 *value = ftdi->eeprom->chip;
3751 break;
3752 case CHIP_SIZE:
3753 *value = ftdi->eeprom->size;
3754 break;
3755 default:
3756 ftdi_error_return(-1, "Request for unknown EEPROM value");
3757 }
3758 return 0;
3759}
3760
3761/**
3762 Set a value in the decoded EEPROM Structure
3763 No parameter checking is performed
3764
3765 \param ftdi pointer to ftdi_context
3766 \param value_name Enum of the value to set
3767 \param value to set
3768
3769 \retval 0: all fine
3770 \retval -1: Value doesn't exist
3771 \retval -2: Value not user settable
3772*/
3773int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3774{
3775 switch (value_name)
3776 {
3777 case VENDOR_ID:
3778 ftdi->eeprom->vendor_id = value;
3779 break;
3780 case PRODUCT_ID:
3781 ftdi->eeprom->product_id = value;
3782 break;
3783 case RELEASE_NUMBER:
3784 ftdi->eeprom->release_number = value;
3785 break;
3786 case SELF_POWERED:
3787 ftdi->eeprom->self_powered = value;
3788 break;
3789 case REMOTE_WAKEUP:
3790 ftdi->eeprom->remote_wakeup = value;
3791 break;
3792 case IS_NOT_PNP:
3793 ftdi->eeprom->is_not_pnp = value;
3794 break;
3795 case SUSPEND_DBUS7:
3796 ftdi->eeprom->suspend_dbus7 = value;
3797 break;
3798 case IN_IS_ISOCHRONOUS:
3799 ftdi->eeprom->in_is_isochronous = value;
3800 break;
3801 case OUT_IS_ISOCHRONOUS:
3802 ftdi->eeprom->out_is_isochronous = value;
3803 break;
3804 case SUSPEND_PULL_DOWNS:
3805 ftdi->eeprom->suspend_pull_downs = value;
3806 break;
3807 case USE_SERIAL:
3808 ftdi->eeprom->use_serial = value;
3809 break;
3810 case USB_VERSION:
3811 ftdi->eeprom->usb_version = value;
3812 break;
3813 case USE_USB_VERSION:
3814 ftdi->eeprom->use_usb_version = value;
3815 break;
3816 case MAX_POWER:
3817 ftdi->eeprom->max_power = value;
3818 break;
3819 case CHANNEL_A_TYPE:
3820 ftdi->eeprom->channel_a_type = value;
3821 break;
3822 case CHANNEL_B_TYPE:
3823 ftdi->eeprom->channel_b_type = value;
3824 break;
3825 case CHANNEL_A_DRIVER:
3826 ftdi->eeprom->channel_a_driver = value;
3827 break;
3828 case CHANNEL_B_DRIVER:
3829 ftdi->eeprom->channel_b_driver = value;
3830 break;
3831 case CHANNEL_C_DRIVER:
3832 ftdi->eeprom->channel_c_driver = value;
3833 break;
3834 case CHANNEL_D_DRIVER:
3835 ftdi->eeprom->channel_d_driver = value;
3836 break;
3837 case CHANNEL_A_RS485:
3838 ftdi->eeprom->channel_a_rs485enable = value;
3839 break;
3840 case CHANNEL_B_RS485:
3841 ftdi->eeprom->channel_b_rs485enable = value;
3842 break;
3843 case CHANNEL_C_RS485:
3844 ftdi->eeprom->channel_c_rs485enable = value;
3845 break;
3846 case CHANNEL_D_RS485:
3847 ftdi->eeprom->channel_d_rs485enable = value;
3848 break;
3849 case CBUS_FUNCTION_0:
3850 ftdi->eeprom->cbus_function[0] = value;
3851 break;
3852 case CBUS_FUNCTION_1:
3853 ftdi->eeprom->cbus_function[1] = value;
3854 break;
3855 case CBUS_FUNCTION_2:
3856 ftdi->eeprom->cbus_function[2] = value;
3857 break;
3858 case CBUS_FUNCTION_3:
3859 ftdi->eeprom->cbus_function[3] = value;
3860 break;
3861 case CBUS_FUNCTION_4:
3862 ftdi->eeprom->cbus_function[4] = value;
3863 break;
3864 case CBUS_FUNCTION_5:
3865 ftdi->eeprom->cbus_function[5] = value;
3866 break;
3867 case CBUS_FUNCTION_6:
3868 ftdi->eeprom->cbus_function[6] = value;
3869 break;
3870 case CBUS_FUNCTION_7:
3871 ftdi->eeprom->cbus_function[7] = value;
3872 break;
3873 case CBUS_FUNCTION_8:
3874 ftdi->eeprom->cbus_function[8] = value;
3875 break;
3876 case CBUS_FUNCTION_9:
3877 ftdi->eeprom->cbus_function[9] = value;
3878 break;
3879 case HIGH_CURRENT:
3880 ftdi->eeprom->high_current = value;
3881 break;
3882 case HIGH_CURRENT_A:
3883 ftdi->eeprom->high_current_a = value;
3884 break;
3885 case HIGH_CURRENT_B:
3886 ftdi->eeprom->high_current_b = value;
3887 break;
3888 case INVERT:
3889 ftdi->eeprom->invert = value;
3890 break;
3891 case GROUP0_DRIVE:
3892 ftdi->eeprom->group0_drive = value;
3893 break;
3894 case GROUP0_SCHMITT:
3895 ftdi->eeprom->group0_schmitt = value;
3896 break;
3897 case GROUP0_SLEW:
3898 ftdi->eeprom->group0_slew = value;
3899 break;
3900 case GROUP1_DRIVE:
3901 ftdi->eeprom->group1_drive = value;
3902 break;
3903 case GROUP1_SCHMITT:
3904 ftdi->eeprom->group1_schmitt = value;
3905 break;
3906 case GROUP1_SLEW:
3907 ftdi->eeprom->group1_slew = value;
3908 break;
3909 case GROUP2_DRIVE:
3910 ftdi->eeprom->group2_drive = value;
3911 break;
3912 case GROUP2_SCHMITT:
3913 ftdi->eeprom->group2_schmitt = value;
3914 break;
3915 case GROUP2_SLEW:
3916 ftdi->eeprom->group2_slew = value;
3917 break;
3918 case GROUP3_DRIVE:
3919 ftdi->eeprom->group3_drive = value;
3920 break;
3921 case GROUP3_SCHMITT:
3922 ftdi->eeprom->group3_schmitt = value;
3923 break;
3924 case GROUP3_SLEW:
3925 ftdi->eeprom->group3_slew = value;
3926 break;
3927 case CHIP_TYPE:
3928 ftdi->eeprom->chip = value;
3929 break;
3930 case POWER_SAVE:
3931 ftdi->eeprom->powersave = value;
3932 break;
3933 case CLOCK_POLARITY:
3934 ftdi->eeprom->clock_polarity = value;
3935 break;
3936 case DATA_ORDER:
3937 ftdi->eeprom->data_order = value;
3938 break;
3939 case FLOW_CONTROL:
3940 ftdi->eeprom->flow_control = value;
3941 break;
3942 case CHIP_SIZE:
3943 ftdi_error_return(-2, "EEPROM Value can't be changed");
3944 break;
3945
3946 default :
3947 ftdi_error_return(-1, "Request to unknown EEPROM value");
3948 }
3949 ftdi->eeprom->initialized_for_connected_device = 0;
3950 return 0;
3951}
3952
3953/** Get the read-only buffer to the binary EEPROM content
3954
3955 \param ftdi pointer to ftdi_context
3956 \param buf buffer to receive EEPROM content
3957 \param size Size of receiving buffer
3958
3959 \retval 0: All fine
3960 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3961 \retval -2: Not enough room to store eeprom
3962*/
3963int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3964{
3965 if (!ftdi || !(ftdi->eeprom))
3966 ftdi_error_return(-1, "No appropriate structure");
3967
3968 if (!buf || size < ftdi->eeprom->size)
3969 ftdi_error_return(-1, "Not enough room to store eeprom");
3970
3971 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3972 if (size > FTDI_MAX_EEPROM_SIZE)
3973 size = FTDI_MAX_EEPROM_SIZE;
3974
3975 memcpy(buf, ftdi->eeprom->buf, size);
3976
3977 return 0;
3978}
3979
3980/** Set the EEPROM content from the user-supplied prefilled buffer
3981
3982 \param ftdi pointer to ftdi_context
3983 \param buf buffer to read EEPROM content
3984 \param size Size of buffer
3985
3986 \retval 0: All fine
3987 \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing
3988*/
3989int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
3990{
3991 if (!ftdi || !(ftdi->eeprom) || !buf)
3992 ftdi_error_return(-1, "No appropriate structure");
3993
3994 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3995 if (size > FTDI_MAX_EEPROM_SIZE)
3996 size = FTDI_MAX_EEPROM_SIZE;
3997
3998 memcpy(ftdi->eeprom->buf, buf, size);
3999
4000 return 0;
4001}
4002
4003/**
4004 Read eeprom location
4005
4006 \param ftdi pointer to ftdi_context
4007 \param eeprom_addr Address of eeprom location to be read
4008 \param eeprom_val Pointer to store read eeprom location
4009
4010 \retval 0: all fine
4011 \retval -1: read failed
4012 \retval -2: USB device unavailable
4013*/
4014int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4015{
4016 if (ftdi == NULL || ftdi->usb_dev == NULL)
4017 ftdi_error_return(-2, "USB device unavailable");
4018
4019 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
4020 ftdi_error_return(-1, "reading eeprom failed");
4021
4022 return 0;
4023}
4024
4025/**
4026 Read eeprom
4027
4028 \param ftdi pointer to ftdi_context
4029
4030 \retval 0: all fine
4031 \retval -1: read failed
4032 \retval -2: USB device unavailable
4033*/
4034int ftdi_read_eeprom(struct ftdi_context *ftdi)
4035{
4036 int i;
4037 unsigned char *buf;
4038
4039 if (ftdi == NULL || ftdi->usb_dev == NULL)
4040 ftdi_error_return(-2, "USB device unavailable");
4041 buf = ftdi->eeprom->buf;
4042
4043 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4044 {
4045 if (libusb_control_transfer(
4046 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4047 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4048 ftdi_error_return(-1, "reading eeprom failed");
4049 }
4050
4051 if (ftdi->type == TYPE_R)
4052 ftdi->eeprom->size = 0x80;
4053 /* Guesses size of eeprom by comparing halves
4054 - will not work with blank eeprom */
4055 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4056 ftdi->eeprom->size = -1;
4057 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4058 ftdi->eeprom->size = 0x80;
4059 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4060 ftdi->eeprom->size = 0x40;
4061 else
4062 ftdi->eeprom->size = 0x100;
4063 return 0;
4064}
4065
4066/*
4067 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4068 Function is only used internally
4069 \internal
4070*/
4071static unsigned char ftdi_read_chipid_shift(unsigned char value)
4072{
4073 return ((value & 1) << 1) |
4074 ((value & 2) << 5) |
4075 ((value & 4) >> 2) |
4076 ((value & 8) << 4) |
4077 ((value & 16) >> 1) |
4078 ((value & 32) >> 1) |
4079 ((value & 64) >> 4) |
4080 ((value & 128) >> 2);
4081}
4082
4083/**
4084 Read the FTDIChip-ID from R-type devices
4085
4086 \param ftdi pointer to ftdi_context
4087 \param chipid Pointer to store FTDIChip-ID
4088
4089 \retval 0: all fine
4090 \retval -1: read failed
4091 \retval -2: USB device unavailable
4092*/
4093int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4094{
4095 unsigned int a = 0, b = 0;
4096
4097 if (ftdi == NULL || ftdi->usb_dev == NULL)
4098 ftdi_error_return(-2, "USB device unavailable");
4099
4100 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4101 {
4102 a = a << 8 | a >> 8;
4103 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4104 {
4105 b = b << 8 | b >> 8;
4106 a = (a << 16) | (b & 0xFFFF);
4107 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4108 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4109 *chipid = a ^ 0xa5f0f7d1;
4110 return 0;
4111 }
4112 }
4113
4114 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4115}
4116
4117/**
4118 Write eeprom location
4119
4120 \param ftdi pointer to ftdi_context
4121 \param eeprom_addr Address of eeprom location to be written
4122 \param eeprom_val Value to be written
4123
4124 \retval 0: all fine
4125 \retval -1: write failed
4126 \retval -2: USB device unavailable
4127 \retval -3: Invalid access to checksum protected area below 0x80
4128 \retval -4: Device can't access unprotected area
4129 \retval -5: Reading chip type failed
4130*/
4131int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4132 unsigned short eeprom_val)
4133{
4134 int chip_type_location;
4135 unsigned short chip_type;
4136
4137 if (ftdi == NULL || ftdi->usb_dev == NULL)
4138 ftdi_error_return(-2, "USB device unavailable");
4139
4140 if (eeprom_addr <0x80)
4141 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4142
4143
4144 switch (ftdi->type)
4145 {
4146 case TYPE_BM:
4147 case TYPE_2232C:
4148 chip_type_location = 0x14;
4149 break;
4150 case TYPE_2232H:
4151 case TYPE_4232H:
4152 chip_type_location = 0x18;
4153 break;
4154 case TYPE_232H:
4155 chip_type_location = 0x1e;
4156 break;
4157 default:
4158 ftdi_error_return(-4, "Device can't access unprotected area");
4159 }
4160
4161 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4162 ftdi_error_return(-5, "Reading failed");
4163 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4164 if ((chip_type & 0xff) != 0x66)
4165 {
4166 ftdi_error_return(-6, "EEPROM is not of 93x66");
4167 }
4168
4169 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4170 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4171 NULL, 0, ftdi->usb_write_timeout) != 0)
4172 ftdi_error_return(-1, "unable to write eeprom");
4173
4174 return 0;
4175}
4176
4177/**
4178 Write eeprom
4179
4180 \param ftdi pointer to ftdi_context
4181
4182 \retval 0: all fine
4183 \retval -1: read failed
4184 \retval -2: USB device unavailable
4185 \retval -3: EEPROM not initialized for the connected device;
4186*/
4187int ftdi_write_eeprom(struct ftdi_context *ftdi)
4188{
4189 unsigned short usb_val, status;
4190 int i, ret;
4191 unsigned char *eeprom;
4192
4193 if (ftdi == NULL || ftdi->usb_dev == NULL)
4194 ftdi_error_return(-2, "USB device unavailable");
4195
4196 if(ftdi->eeprom->initialized_for_connected_device == 0)
4197 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4198
4199 eeprom = ftdi->eeprom->buf;
4200
4201 /* These commands were traced while running MProg */
4202 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4203 return ret;
4204 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4205 return ret;
4206 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4207 return ret;
4208
4209 for (i = 0; i < ftdi->eeprom->size/2; i++)
4210 {
4211 /* Do not try to write to reserved area */
4212 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4213 {
4214 i = 0x50;
4215 }
4216 usb_val = eeprom[i*2];
4217 usb_val += eeprom[(i*2)+1] << 8;
4218 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4219 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4220 NULL, 0, ftdi->usb_write_timeout) < 0)
4221 ftdi_error_return(-1, "unable to write eeprom");
4222 }
4223
4224 return 0;
4225}
4226
4227/**
4228 Erase eeprom
4229
4230 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4231
4232 \param ftdi pointer to ftdi_context
4233
4234 \retval 0: all fine
4235 \retval -1: erase failed
4236 \retval -2: USB device unavailable
4237 \retval -3: Writing magic failed
4238 \retval -4: Read EEPROM failed
4239 \retval -5: Unexpected EEPROM value
4240*/
4241#define MAGIC 0x55aa
4242int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4243{
4244 unsigned short eeprom_value;
4245 if (ftdi == NULL || ftdi->usb_dev == NULL)
4246 ftdi_error_return(-2, "USB device unavailable");
4247
4248 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4249 {
4250 ftdi->eeprom->chip = 0;
4251 return 0;
4252 }
4253
4254 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4255 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4256 ftdi_error_return(-1, "unable to erase eeprom");
4257
4258
4259 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4260 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4261 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4262 Chip is 93x66 if magic is only read at word position 0xc0*/
4263 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4264 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4265 NULL, 0, ftdi->usb_write_timeout) != 0)
4266 ftdi_error_return(-3, "Writing magic failed");
4267 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4268 ftdi_error_return(-4, "Reading failed");
4269 if (eeprom_value == MAGIC)
4270 {
4271 ftdi->eeprom->chip = 0x46;
4272 }
4273 else
4274 {
4275 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4276 ftdi_error_return(-4, "Reading failed");
4277 if (eeprom_value == MAGIC)
4278 ftdi->eeprom->chip = 0x56;
4279 else
4280 {
4281 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4282 ftdi_error_return(-4, "Reading failed");
4283 if (eeprom_value == MAGIC)
4284 ftdi->eeprom->chip = 0x66;
4285 else
4286 {
4287 ftdi->eeprom->chip = -1;
4288 }
4289 }
4290 }
4291 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4292 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4293 ftdi_error_return(-1, "unable to erase eeprom");
4294 return 0;
4295}
4296
4297/**
4298 Get string representation for last error code
4299
4300 \param ftdi pointer to ftdi_context
4301
4302 \retval Pointer to error string
4303*/
4304char *ftdi_get_error_string (struct ftdi_context *ftdi)
4305{
4306 if (ftdi == NULL)
4307 return "";
4308
4309 return ftdi->error_str;
4310}
4311
4312/* @} end of doxygen libftdi group */