Move libusb_init() call to prevent crash
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2011 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17/**
18 \mainpage libftdi API documentation
19
20 Library to talk to FTDI chips. You find the latest versions of libftdi at
21 http://www.intra2net.com/en/developer/libftdi/
22
23 The library is easy to use. Have a look at this short example:
24 \include simple.c
25
26 More examples can be found in the "examples" directory.
27*/
28/** \addtogroup libftdi */
29/* @{ */
30
31#include <libusb.h>
32#include <string.h>
33#include <errno.h>
34#include <stdio.h>
35#include <stdlib.h>
36
37#include "ftdi.h"
38
39#define ftdi_error_return(code, str) do { \
40 ftdi->error_str = str; \
41 return code; \
42 } while(0);
43
44#define ftdi_error_return_free_device_list(code, str, devs) do { \
45 libusb_free_device_list(devs,1); \
46 ftdi->error_str = str; \
47 return code; \
48 } while(0);
49
50
51/**
52 Internal function to close usb device pointer.
53 Sets ftdi->usb_dev to NULL.
54 \internal
55
56 \param ftdi pointer to ftdi_context
57
58 \retval none
59*/
60static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
61{
62 if (ftdi && ftdi->usb_dev)
63 {
64 libusb_close (ftdi->usb_dev);
65 ftdi->usb_dev = NULL;
66 }
67}
68
69/**
70 Initializes a ftdi_context.
71
72 \param ftdi pointer to ftdi_context
73
74 \retval 0: all fine
75 \retval -1: couldn't allocate read buffer
76 \retval -2: couldn't allocate struct buffer
77 \retval -3: libusb_init() failed
78
79 \remark This should be called before all functions
80*/
81int ftdi_init(struct ftdi_context *ftdi)
82{
83 struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
84 ftdi->usb_ctx = NULL;
85 ftdi->usb_dev = NULL;
86 ftdi->usb_read_timeout = 5000;
87 ftdi->usb_write_timeout = 5000;
88
89 ftdi->type = TYPE_BM; /* chip type */
90 ftdi->baudrate = -1;
91 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
92
93 ftdi->readbuffer = NULL;
94 ftdi->readbuffer_offset = 0;
95 ftdi->readbuffer_remaining = 0;
96 ftdi->writebuffer_chunksize = 4096;
97 ftdi->max_packet_size = 0;
98 ftdi->error_str = NULL;
99 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
100
101 if (libusb_init(&ftdi->usb_ctx) < 0)
102 ftdi_error_return(-3, "libusb_init() failed");
103
104 ftdi_set_interface(ftdi, INTERFACE_ANY);
105 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
106
107 if (eeprom == 0)
108 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
109 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
110 ftdi->eeprom = eeprom;
111
112 /* All fine. Now allocate the readbuffer */
113 return ftdi_read_data_set_chunksize(ftdi, 4096);
114}
115
116/**
117 Allocate and initialize a new ftdi_context
118
119 \return a pointer to a new ftdi_context, or NULL on failure
120*/
121struct ftdi_context *ftdi_new(void)
122{
123 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
124
125 if (ftdi == NULL)
126 {
127 return NULL;
128 }
129
130 if (ftdi_init(ftdi) != 0)
131 {
132 free(ftdi);
133 return NULL;
134 }
135
136 return ftdi;
137}
138
139/**
140 Open selected channels on a chip, otherwise use first channel.
141
142 \param ftdi pointer to ftdi_context
143 \param interface Interface to use for FT2232C/2232H/4232H chips.
144
145 \retval 0: all fine
146 \retval -1: unknown interface
147 \retval -2: USB device unavailable
148*/
149int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
150{
151 if (ftdi == NULL)
152 ftdi_error_return(-2, "USB device unavailable");
153
154 switch (interface)
155 {
156 case INTERFACE_ANY:
157 case INTERFACE_A:
158 ftdi->interface = 0;
159 ftdi->index = INTERFACE_A;
160 ftdi->in_ep = 0x02;
161 ftdi->out_ep = 0x81;
162 break;
163 case INTERFACE_B:
164 ftdi->interface = 1;
165 ftdi->index = INTERFACE_B;
166 ftdi->in_ep = 0x04;
167 ftdi->out_ep = 0x83;
168 break;
169 case INTERFACE_C:
170 ftdi->interface = 2;
171 ftdi->index = INTERFACE_C;
172 ftdi->in_ep = 0x06;
173 ftdi->out_ep = 0x85;
174 break;
175 case INTERFACE_D:
176 ftdi->interface = 3;
177 ftdi->index = INTERFACE_D;
178 ftdi->in_ep = 0x08;
179 ftdi->out_ep = 0x87;
180 break;
181 default:
182 ftdi_error_return(-1, "Unknown interface");
183 }
184 return 0;
185}
186
187/**
188 Deinitializes a ftdi_context.
189
190 \param ftdi pointer to ftdi_context
191*/
192void ftdi_deinit(struct ftdi_context *ftdi)
193{
194 if (ftdi == NULL)
195 return;
196
197 ftdi_usb_close_internal (ftdi);
198
199 if (ftdi->readbuffer != NULL)
200 {
201 free(ftdi->readbuffer);
202 ftdi->readbuffer = NULL;
203 }
204
205 if (ftdi->eeprom != NULL)
206 {
207 if (ftdi->eeprom->manufacturer != 0)
208 {
209 free(ftdi->eeprom->manufacturer);
210 ftdi->eeprom->manufacturer = 0;
211 }
212 if (ftdi->eeprom->product != 0)
213 {
214 free(ftdi->eeprom->product);
215 ftdi->eeprom->product = 0;
216 }
217 if (ftdi->eeprom->serial != 0)
218 {
219 free(ftdi->eeprom->serial);
220 ftdi->eeprom->serial = 0;
221 }
222 free(ftdi->eeprom);
223 ftdi->eeprom = NULL;
224 }
225
226 if (ftdi->usb_ctx)
227 {
228 libusb_exit(ftdi->usb_ctx);
229 ftdi->usb_ctx = NULL;
230 }
231}
232
233/**
234 Deinitialize and free an ftdi_context.
235
236 \param ftdi pointer to ftdi_context
237*/
238void ftdi_free(struct ftdi_context *ftdi)
239{
240 ftdi_deinit(ftdi);
241 free(ftdi);
242}
243
244/**
245 Use an already open libusb device.
246
247 \param ftdi pointer to ftdi_context
248 \param usb libusb libusb_device_handle to use
249*/
250void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
251{
252 if (ftdi == NULL)
253 return;
254
255 ftdi->usb_dev = usb;
256}
257
258
259/**
260 Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which
261 needs to be deallocated by ftdi_list_free() after use.
262
263 \param ftdi pointer to ftdi_context
264 \param devlist Pointer where to store list of found devices
265 \param vendor Vendor ID to search for
266 \param product Product ID to search for
267
268 \retval >0: number of devices found
269 \retval -3: out of memory
270 \retval -5: libusb_get_device_list() failed
271 \retval -6: libusb_get_device_descriptor() failed
272*/
273int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
274{
275 struct ftdi_device_list **curdev;
276 libusb_device *dev;
277 libusb_device **devs;
278 int count = 0;
279 int i = 0;
280
281 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
282 ftdi_error_return(-5, "libusb_get_device_list() failed");
283
284 curdev = devlist;
285 *curdev = NULL;
286
287 while ((dev = devs[i++]) != NULL)
288 {
289 struct libusb_device_descriptor desc;
290
291 if (libusb_get_device_descriptor(dev, &desc) < 0)
292 ftdi_error_return(-6, "libusb_get_device_descriptor() failed");
293
294 if (desc.idVendor == vendor && desc.idProduct == product)
295 {
296 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
297 if (!*curdev)
298 ftdi_error_return(-3, "out of memory");
299
300 (*curdev)->next = NULL;
301 (*curdev)->dev = dev;
302
303 curdev = &(*curdev)->next;
304 count++;
305 }
306 }
307
308 return count;
309}
310
311/**
312 Frees a usb device list.
313
314 \param devlist USB device list created by ftdi_usb_find_all()
315*/
316void ftdi_list_free(struct ftdi_device_list **devlist)
317{
318 struct ftdi_device_list *curdev, *next;
319
320 for (curdev = *devlist; curdev != NULL;)
321 {
322 next = curdev->next;
323 free(curdev);
324 curdev = next;
325 }
326
327 *devlist = NULL;
328}
329
330/**
331 Frees a usb device list.
332
333 \param devlist USB device list created by ftdi_usb_find_all()
334*/
335void ftdi_list_free2(struct ftdi_device_list *devlist)
336{
337 ftdi_list_free(&devlist);
338}
339
340/**
341 Return device ID strings from the usb device.
342
343 The parameters manufacturer, description and serial may be NULL
344 or pointer to buffers to store the fetched strings.
345
346 \note Use this function only in combination with ftdi_usb_find_all()
347 as it closes the internal "usb_dev" after use.
348
349 \param ftdi pointer to ftdi_context
350 \param dev libusb usb_dev to use
351 \param manufacturer Store manufacturer string here if not NULL
352 \param mnf_len Buffer size of manufacturer string
353 \param description Store product description string here if not NULL
354 \param desc_len Buffer size of product description string
355 \param serial Store serial string here if not NULL
356 \param serial_len Buffer size of serial string
357
358 \retval 0: all fine
359 \retval -1: wrong arguments
360 \retval -4: unable to open device
361 \retval -7: get product manufacturer failed
362 \retval -8: get product description failed
363 \retval -9: get serial number failed
364 \retval -11: libusb_get_device_descriptor() failed
365*/
366int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev,
367 char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len)
368{
369 struct libusb_device_descriptor desc;
370
371 if ((ftdi==NULL) || (dev==NULL))
372 return -1;
373
374 if (libusb_open(dev, &ftdi->usb_dev) < 0)
375 ftdi_error_return(-4, "libusb_open() failed");
376
377 if (libusb_get_device_descriptor(dev, &desc) < 0)
378 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
379
380 if (manufacturer != NULL)
381 {
382 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
383 {
384 ftdi_usb_close_internal (ftdi);
385 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
386 }
387 }
388
389 if (description != NULL)
390 {
391 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
392 {
393 ftdi_usb_close_internal (ftdi);
394 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
395 }
396 }
397
398 if (serial != NULL)
399 {
400 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
401 {
402 ftdi_usb_close_internal (ftdi);
403 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
404 }
405 }
406
407 ftdi_usb_close_internal (ftdi);
408
409 return 0;
410}
411
412/**
413 * Internal function to determine the maximum packet size.
414 * \param ftdi pointer to ftdi_context
415 * \param dev libusb usb_dev to use
416 * \retval Maximum packet size for this device
417 */
418static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
419{
420 struct libusb_device_descriptor desc;
421 struct libusb_config_descriptor *config0;
422 unsigned int packet_size;
423
424 // Sanity check
425 if (ftdi == NULL || dev == NULL)
426 return 64;
427
428 // Determine maximum packet size. Init with default value.
429 // New hi-speed devices from FTDI use a packet size of 512 bytes
430 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
431 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
432 packet_size = 512;
433 else
434 packet_size = 64;
435
436 if (libusb_get_device_descriptor(dev, &desc) < 0)
437 return packet_size;
438
439 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
440 return packet_size;
441
442 if (desc.bNumConfigurations > 0)
443 {
444 if (ftdi->interface < config0->bNumInterfaces)
445 {
446 struct libusb_interface interface = config0->interface[ftdi->interface];
447 if (interface.num_altsetting > 0)
448 {
449 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
450 if (descriptor.bNumEndpoints > 0)
451 {
452 packet_size = descriptor.endpoint[0].wMaxPacketSize;
453 }
454 }
455 }
456 }
457
458 libusb_free_config_descriptor (config0);
459 return packet_size;
460}
461
462/**
463 Opens a ftdi device given by an usb_device.
464
465 \param ftdi pointer to ftdi_context
466 \param dev libusb usb_dev to use
467
468 \retval 0: all fine
469 \retval -3: unable to config device
470 \retval -4: unable to open device
471 \retval -5: unable to claim device
472 \retval -6: reset failed
473 \retval -7: set baudrate failed
474 \retval -8: ftdi context invalid
475 \retval -9: libusb_get_device_descriptor() failed
476 \retval -10: libusb_get_config_descriptor() failed
477 \retval -11: libusb_detach_kernel_driver() failed
478 \retval -12: libusb_get_configuration() failed
479*/
480int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
481{
482 struct libusb_device_descriptor desc;
483 struct libusb_config_descriptor *config0;
484 int cfg, cfg0, detach_errno = 0;
485
486 if (ftdi == NULL)
487 ftdi_error_return(-8, "ftdi context invalid");
488
489 if (libusb_open(dev, &ftdi->usb_dev) < 0)
490 ftdi_error_return(-4, "libusb_open() failed");
491
492 if (libusb_get_device_descriptor(dev, &desc) < 0)
493 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
494
495 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
496 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
497 cfg0 = config0->bConfigurationValue;
498 libusb_free_config_descriptor (config0);
499
500 // Try to detach ftdi_sio kernel module.
501 //
502 // The return code is kept in a separate variable and only parsed
503 // if usb_set_configuration() or usb_claim_interface() fails as the
504 // detach operation might be denied and everything still works fine.
505 // Likely scenario is a static ftdi_sio kernel module.
506 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
507 {
508 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
509 detach_errno = errno;
510 }
511
512 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
513 ftdi_error_return(-12, "libusb_get_configuration () failed");
514 // set configuration (needed especially for windows)
515 // tolerate EBUSY: one device with one configuration, but two interfaces
516 // and libftdi sessions to both interfaces (e.g. FT2232)
517 if (desc.bNumConfigurations > 0 && cfg != cfg0)
518 {
519 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
520 {
521 ftdi_usb_close_internal (ftdi);
522 if (detach_errno == EPERM)
523 {
524 ftdi_error_return(-8, "inappropriate permissions on device!");
525 }
526 else
527 {
528 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
529 }
530 }
531 }
532
533 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
534 {
535 ftdi_usb_close_internal (ftdi);
536 if (detach_errno == EPERM)
537 {
538 ftdi_error_return(-8, "inappropriate permissions on device!");
539 }
540 else
541 {
542 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
543 }
544 }
545
546 if (ftdi_usb_reset (ftdi) != 0)
547 {
548 ftdi_usb_close_internal (ftdi);
549 ftdi_error_return(-6, "ftdi_usb_reset failed");
550 }
551
552 // Try to guess chip type
553 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
554 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
555 && desc.iSerialNumber == 0))
556 ftdi->type = TYPE_BM;
557 else if (desc.bcdDevice == 0x200)
558 ftdi->type = TYPE_AM;
559 else if (desc.bcdDevice == 0x500)
560 ftdi->type = TYPE_2232C;
561 else if (desc.bcdDevice == 0x600)
562 ftdi->type = TYPE_R;
563 else if (desc.bcdDevice == 0x700)
564 ftdi->type = TYPE_2232H;
565 else if (desc.bcdDevice == 0x800)
566 ftdi->type = TYPE_4232H;
567
568 // Determine maximum packet size
569 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
570
571 if (ftdi_set_baudrate (ftdi, 9600) != 0)
572 {
573 ftdi_usb_close_internal (ftdi);
574 ftdi_error_return(-7, "set baudrate failed");
575 }
576
577 ftdi_error_return(0, "all fine");
578}
579
580/**
581 Opens the first device with a given vendor and product ids.
582
583 \param ftdi pointer to ftdi_context
584 \param vendor Vendor ID
585 \param product Product ID
586
587 \retval same as ftdi_usb_open_desc()
588*/
589int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
590{
591 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
592}
593
594/**
595 Opens the first device with a given, vendor id, product id,
596 description and serial.
597
598 \param ftdi pointer to ftdi_context
599 \param vendor Vendor ID
600 \param product Product ID
601 \param description Description to search for. Use NULL if not needed.
602 \param serial Serial to search for. Use NULL if not needed.
603
604 \retval 0: all fine
605 \retval -3: usb device not found
606 \retval -4: unable to open device
607 \retval -5: unable to claim device
608 \retval -6: reset failed
609 \retval -7: set baudrate failed
610 \retval -8: get product description failed
611 \retval -9: get serial number failed
612 \retval -11: libusb_init() failed
613 \retval -12: libusb_get_device_list() failed
614 \retval -13: libusb_get_device_descriptor() failed
615*/
616int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
617 const char* description, const char* serial)
618{
619 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
620}
621
622/**
623 Opens the index-th device with a given, vendor id, product id,
624 description and serial.
625
626 \param ftdi pointer to ftdi_context
627 \param vendor Vendor ID
628 \param product Product ID
629 \param description Description to search for. Use NULL if not needed.
630 \param serial Serial to search for. Use NULL if not needed.
631 \param index Number of matching device to open if there are more than one, starts with 0.
632
633 \retval 0: all fine
634 \retval -1: usb_find_busses() failed
635 \retval -2: usb_find_devices() failed
636 \retval -3: usb device not found
637 \retval -4: unable to open device
638 \retval -5: unable to claim device
639 \retval -6: reset failed
640 \retval -7: set baudrate failed
641 \retval -8: get product description failed
642 \retval -9: get serial number failed
643 \retval -10: unable to close device
644 \retval -11: ftdi context invalid
645*/
646int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
647 const char* description, const char* serial, unsigned int index)
648{
649 libusb_device *dev;
650 libusb_device **devs;
651 char string[256];
652 int i = 0;
653
654 if (ftdi == NULL)
655 ftdi_error_return(-11, "ftdi context invalid");
656
657 if (libusb_init(&ftdi->usb_ctx) < 0)
658 ftdi_error_return(-11, "libusb_init() failed");
659
660 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
661 ftdi_error_return(-12, "libusb_get_device_list() failed");
662
663 while ((dev = devs[i++]) != NULL)
664 {
665 struct libusb_device_descriptor desc;
666 int res;
667
668 if (libusb_get_device_descriptor(dev, &desc) < 0)
669 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
670
671 if (desc.idVendor == vendor && desc.idProduct == product)
672 {
673 if (libusb_open(dev, &ftdi->usb_dev) < 0)
674 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
675
676 if (description != NULL)
677 {
678 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
679 {
680 ftdi_usb_close_internal (ftdi);
681 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
682 }
683 if (strncmp(string, description, sizeof(string)) != 0)
684 {
685 ftdi_usb_close_internal (ftdi);
686 continue;
687 }
688 }
689 if (serial != NULL)
690 {
691 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
692 {
693 ftdi_usb_close_internal (ftdi);
694 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
695 }
696 if (strncmp(string, serial, sizeof(string)) != 0)
697 {
698 ftdi_usb_close_internal (ftdi);
699 continue;
700 }
701 }
702
703 ftdi_usb_close_internal (ftdi);
704
705 if (index > 0)
706 {
707 index--;
708 continue;
709 }
710
711 res = ftdi_usb_open_dev(ftdi, dev);
712 libusb_free_device_list(devs,1);
713 return res;
714 }
715 }
716
717 // device not found
718 ftdi_error_return_free_device_list(-3, "device not found", devs);
719}
720
721/**
722 Opens the ftdi-device described by a description-string.
723 Intended to be used for parsing a device-description given as commandline argument.
724
725 \param ftdi pointer to ftdi_context
726 \param description NULL-terminated description-string, using this format:
727 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
728 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
729 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
730 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
731
732 \note The description format may be extended in later versions.
733
734 \retval 0: all fine
735 \retval -1: libusb_init() failed
736 \retval -2: libusb_get_device_list() failed
737 \retval -3: usb device not found
738 \retval -4: unable to open device
739 \retval -5: unable to claim device
740 \retval -6: reset failed
741 \retval -7: set baudrate failed
742 \retval -8: get product description failed
743 \retval -9: get serial number failed
744 \retval -10: unable to close device
745 \retval -11: illegal description format
746 \retval -12: ftdi context invalid
747*/
748int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
749{
750 if (ftdi == NULL)
751 ftdi_error_return(-12, "ftdi context invalid");
752
753 if (description[0] == 0 || description[1] != ':')
754 ftdi_error_return(-11, "illegal description format");
755
756 if (description[0] == 'd')
757 {
758 libusb_device *dev;
759 libusb_device **devs;
760 unsigned int bus_number, device_address;
761 int i = 0;
762
763 if (libusb_init (&ftdi->usb_ctx) < 0)
764 ftdi_error_return(-1, "libusb_init() failed");
765
766 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
767 ftdi_error_return(-2, "libusb_get_device_list() failed");
768
769 /* XXX: This doesn't handle symlinks/odd paths/etc... */
770 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
771 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
772
773 while ((dev = devs[i++]) != NULL)
774 {
775 int ret;
776 if (bus_number == libusb_get_bus_number (dev)
777 && device_address == libusb_get_device_address (dev))
778 {
779 ret = ftdi_usb_open_dev(ftdi, dev);
780 libusb_free_device_list(devs,1);
781 return ret;
782 }
783 }
784
785 // device not found
786 ftdi_error_return_free_device_list(-3, "device not found", devs);
787 }
788 else if (description[0] == 'i' || description[0] == 's')
789 {
790 unsigned int vendor;
791 unsigned int product;
792 unsigned int index=0;
793 const char *serial=NULL;
794 const char *startp, *endp;
795
796 errno=0;
797 startp=description+2;
798 vendor=strtoul((char*)startp,(char**)&endp,0);
799 if (*endp != ':' || endp == startp || errno != 0)
800 ftdi_error_return(-11, "illegal description format");
801
802 startp=endp+1;
803 product=strtoul((char*)startp,(char**)&endp,0);
804 if (endp == startp || errno != 0)
805 ftdi_error_return(-11, "illegal description format");
806
807 if (description[0] == 'i' && *endp != 0)
808 {
809 /* optional index field in i-mode */
810 if (*endp != ':')
811 ftdi_error_return(-11, "illegal description format");
812
813 startp=endp+1;
814 index=strtoul((char*)startp,(char**)&endp,0);
815 if (*endp != 0 || endp == startp || errno != 0)
816 ftdi_error_return(-11, "illegal description format");
817 }
818 if (description[0] == 's')
819 {
820 if (*endp != ':')
821 ftdi_error_return(-11, "illegal description format");
822
823 /* rest of the description is the serial */
824 serial=endp+1;
825 }
826
827 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
828 }
829 else
830 {
831 ftdi_error_return(-11, "illegal description format");
832 }
833}
834
835/**
836 Resets the ftdi device.
837
838 \param ftdi pointer to ftdi_context
839
840 \retval 0: all fine
841 \retval -1: FTDI reset failed
842 \retval -2: USB device unavailable
843*/
844int ftdi_usb_reset(struct ftdi_context *ftdi)
845{
846 if (ftdi == NULL || ftdi->usb_dev == NULL)
847 ftdi_error_return(-2, "USB device unavailable");
848
849 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
850 SIO_RESET_REQUEST, SIO_RESET_SIO,
851 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
852 ftdi_error_return(-1,"FTDI reset failed");
853
854 // Invalidate data in the readbuffer
855 ftdi->readbuffer_offset = 0;
856 ftdi->readbuffer_remaining = 0;
857
858 return 0;
859}
860
861/**
862 Clears the read buffer on the chip and the internal read buffer.
863
864 \param ftdi pointer to ftdi_context
865
866 \retval 0: all fine
867 \retval -1: read buffer purge failed
868 \retval -2: USB device unavailable
869*/
870int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
871{
872 if (ftdi == NULL || ftdi->usb_dev == NULL)
873 ftdi_error_return(-2, "USB device unavailable");
874
875 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
876 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
877 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
878 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
879
880 // Invalidate data in the readbuffer
881 ftdi->readbuffer_offset = 0;
882 ftdi->readbuffer_remaining = 0;
883
884 return 0;
885}
886
887/**
888 Clears the write buffer on the chip.
889
890 \param ftdi pointer to ftdi_context
891
892 \retval 0: all fine
893 \retval -1: write buffer purge failed
894 \retval -2: USB device unavailable
895*/
896int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
897{
898 if (ftdi == NULL || ftdi->usb_dev == NULL)
899 ftdi_error_return(-2, "USB device unavailable");
900
901 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
902 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
903 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
904 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
905
906 return 0;
907}
908
909/**
910 Clears the buffers on the chip and the internal read buffer.
911
912 \param ftdi pointer to ftdi_context
913
914 \retval 0: all fine
915 \retval -1: read buffer purge failed
916 \retval -2: write buffer purge failed
917 \retval -3: USB device unavailable
918*/
919int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
920{
921 int result;
922
923 if (ftdi == NULL || ftdi->usb_dev == NULL)
924 ftdi_error_return(-3, "USB device unavailable");
925
926 result = ftdi_usb_purge_rx_buffer(ftdi);
927 if (result < 0)
928 return -1;
929
930 result = ftdi_usb_purge_tx_buffer(ftdi);
931 if (result < 0)
932 return -2;
933
934 return 0;
935}
936
937
938
939/**
940 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
941
942 \param ftdi pointer to ftdi_context
943
944 \retval 0: all fine
945 \retval -1: usb_release failed
946 \retval -3: ftdi context invalid
947*/
948int ftdi_usb_close(struct ftdi_context *ftdi)
949{
950 int rtn = 0;
951
952 if (ftdi == NULL)
953 ftdi_error_return(-3, "ftdi context invalid");
954
955 if (ftdi->usb_dev != NULL)
956 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
957 rtn = -1;
958
959 ftdi_usb_close_internal (ftdi);
960
961 return rtn;
962}
963
964/**
965 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
966 Function is only used internally
967 \internal
968*/
969static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
970 unsigned short *value, unsigned short *index)
971{
972 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
973 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
974 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
975 int divisor, best_divisor, best_baud, best_baud_diff;
976 unsigned long encoded_divisor;
977 int i;
978
979 if (baudrate <= 0)
980 {
981 // Return error
982 return -1;
983 }
984
985 divisor = 24000000 / baudrate;
986
987 if (ftdi->type == TYPE_AM)
988 {
989 // Round down to supported fraction (AM only)
990 divisor -= am_adjust_dn[divisor & 7];
991 }
992
993 // Try this divisor and the one above it (because division rounds down)
994 best_divisor = 0;
995 best_baud = 0;
996 best_baud_diff = 0;
997 for (i = 0; i < 2; i++)
998 {
999 int try_divisor = divisor + i;
1000 int baud_estimate;
1001 int baud_diff;
1002
1003 // Round up to supported divisor value
1004 if (try_divisor <= 8)
1005 {
1006 // Round up to minimum supported divisor
1007 try_divisor = 8;
1008 }
1009 else if (ftdi->type != TYPE_AM && try_divisor < 12)
1010 {
1011 // BM doesn't support divisors 9 through 11 inclusive
1012 try_divisor = 12;
1013 }
1014 else if (divisor < 16)
1015 {
1016 // AM doesn't support divisors 9 through 15 inclusive
1017 try_divisor = 16;
1018 }
1019 else
1020 {
1021 if (ftdi->type == TYPE_AM)
1022 {
1023 // Round up to supported fraction (AM only)
1024 try_divisor += am_adjust_up[try_divisor & 7];
1025 if (try_divisor > 0x1FFF8)
1026 {
1027 // Round down to maximum supported divisor value (for AM)
1028 try_divisor = 0x1FFF8;
1029 }
1030 }
1031 else
1032 {
1033 if (try_divisor > 0x1FFFF)
1034 {
1035 // Round down to maximum supported divisor value (for BM)
1036 try_divisor = 0x1FFFF;
1037 }
1038 }
1039 }
1040 // Get estimated baud rate (to nearest integer)
1041 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1042 // Get absolute difference from requested baud rate
1043 if (baud_estimate < baudrate)
1044 {
1045 baud_diff = baudrate - baud_estimate;
1046 }
1047 else
1048 {
1049 baud_diff = baud_estimate - baudrate;
1050 }
1051 if (i == 0 || baud_diff < best_baud_diff)
1052 {
1053 // Closest to requested baud rate so far
1054 best_divisor = try_divisor;
1055 best_baud = baud_estimate;
1056 best_baud_diff = baud_diff;
1057 if (baud_diff == 0)
1058 {
1059 // Spot on! No point trying
1060 break;
1061 }
1062 }
1063 }
1064 // Encode the best divisor value
1065 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1066 // Deal with special cases for encoded value
1067 if (encoded_divisor == 1)
1068 {
1069 encoded_divisor = 0; // 3000000 baud
1070 }
1071 else if (encoded_divisor == 0x4001)
1072 {
1073 encoded_divisor = 1; // 2000000 baud (BM only)
1074 }
1075 // Split into "value" and "index" values
1076 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1077 if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H)
1078 {
1079 *index = (unsigned short)(encoded_divisor >> 8);
1080 *index &= 0xFF00;
1081 *index |= ftdi->index;
1082 }
1083 else
1084 *index = (unsigned short)(encoded_divisor >> 16);
1085
1086 // Return the nearest baud rate
1087 return best_baud;
1088}
1089
1090/**
1091 Sets the chip baud rate
1092
1093 \param ftdi pointer to ftdi_context
1094 \param baudrate baud rate to set
1095
1096 \retval 0: all fine
1097 \retval -1: invalid baudrate
1098 \retval -2: setting baudrate failed
1099 \retval -3: USB device unavailable
1100*/
1101int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1102{
1103 unsigned short value, index;
1104 int actual_baudrate;
1105
1106 if (ftdi == NULL || ftdi->usb_dev == NULL)
1107 ftdi_error_return(-3, "USB device unavailable");
1108
1109 if (ftdi->bitbang_enabled)
1110 {
1111 baudrate = baudrate*4;
1112 }
1113
1114 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1115 if (actual_baudrate <= 0)
1116 ftdi_error_return (-1, "Silly baudrate <= 0.");
1117
1118 // Check within tolerance (about 5%)
1119 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1120 || ((actual_baudrate < baudrate)
1121 ? (actual_baudrate * 21 < baudrate * 20)
1122 : (baudrate * 21 < actual_baudrate * 20)))
1123 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1124
1125 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1126 SIO_SET_BAUDRATE_REQUEST, value,
1127 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1128 ftdi_error_return (-2, "Setting new baudrate failed");
1129
1130 ftdi->baudrate = baudrate;
1131 return 0;
1132}
1133
1134/**
1135 Set (RS232) line characteristics.
1136 The break type can only be set via ftdi_set_line_property2()
1137 and defaults to "off".
1138
1139 \param ftdi pointer to ftdi_context
1140 \param bits Number of bits
1141 \param sbit Number of stop bits
1142 \param parity Parity mode
1143
1144 \retval 0: all fine
1145 \retval -1: Setting line property failed
1146*/
1147int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1148 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1149{
1150 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1151}
1152
1153/**
1154 Set (RS232) line characteristics
1155
1156 \param ftdi pointer to ftdi_context
1157 \param bits Number of bits
1158 \param sbit Number of stop bits
1159 \param parity Parity mode
1160 \param break_type Break type
1161
1162 \retval 0: all fine
1163 \retval -1: Setting line property failed
1164 \retval -2: USB device unavailable
1165*/
1166int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1167 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1168 enum ftdi_break_type break_type)
1169{
1170 unsigned short value = bits;
1171
1172 if (ftdi == NULL || ftdi->usb_dev == NULL)
1173 ftdi_error_return(-2, "USB device unavailable");
1174
1175 switch (parity)
1176 {
1177 case NONE:
1178 value |= (0x00 << 8);
1179 break;
1180 case ODD:
1181 value |= (0x01 << 8);
1182 break;
1183 case EVEN:
1184 value |= (0x02 << 8);
1185 break;
1186 case MARK:
1187 value |= (0x03 << 8);
1188 break;
1189 case SPACE:
1190 value |= (0x04 << 8);
1191 break;
1192 }
1193
1194 switch (sbit)
1195 {
1196 case STOP_BIT_1:
1197 value |= (0x00 << 11);
1198 break;
1199 case STOP_BIT_15:
1200 value |= (0x01 << 11);
1201 break;
1202 case STOP_BIT_2:
1203 value |= (0x02 << 11);
1204 break;
1205 }
1206
1207 switch (break_type)
1208 {
1209 case BREAK_OFF:
1210 value |= (0x00 << 14);
1211 break;
1212 case BREAK_ON:
1213 value |= (0x01 << 14);
1214 break;
1215 }
1216
1217 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1218 SIO_SET_DATA_REQUEST, value,
1219 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1220 ftdi_error_return (-1, "Setting new line property failed");
1221
1222 return 0;
1223}
1224
1225/**
1226 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1227
1228 \param ftdi pointer to ftdi_context
1229 \param buf Buffer with the data
1230 \param size Size of the buffer
1231
1232 \retval -666: USB device unavailable
1233 \retval <0: error code from usb_bulk_write()
1234 \retval >0: number of bytes written
1235*/
1236int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1237{
1238 int offset = 0;
1239 int actual_length;
1240
1241 if (ftdi == NULL || ftdi->usb_dev == NULL)
1242 ftdi_error_return(-666, "USB device unavailable");
1243
1244 while (offset < size)
1245 {
1246 int write_size = ftdi->writebuffer_chunksize;
1247
1248 if (offset+write_size > size)
1249 write_size = size-offset;
1250
1251 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1252 ftdi_error_return(-1, "usb bulk write failed");
1253
1254 offset += actual_length;
1255 }
1256
1257 return offset;
1258}
1259
1260static void ftdi_read_data_cb(struct libusb_transfer *transfer)
1261{
1262 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1263 struct ftdi_context *ftdi = tc->ftdi;
1264 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1265
1266 packet_size = ftdi->max_packet_size;
1267
1268 actual_length = transfer->actual_length;
1269
1270 if (actual_length > 2)
1271 {
1272 // skip FTDI status bytes.
1273 // Maybe stored in the future to enable modem use
1274 num_of_chunks = actual_length / packet_size;
1275 chunk_remains = actual_length % packet_size;
1276 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1277
1278 ftdi->readbuffer_offset += 2;
1279 actual_length -= 2;
1280
1281 if (actual_length > packet_size - 2)
1282 {
1283 for (i = 1; i < num_of_chunks; i++)
1284 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1285 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1286 packet_size - 2);
1287 if (chunk_remains > 2)
1288 {
1289 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1290 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1291 chunk_remains-2);
1292 actual_length -= 2*num_of_chunks;
1293 }
1294 else
1295 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1296 }
1297
1298 if (actual_length > 0)
1299 {
1300 // data still fits in buf?
1301 if (tc->offset + actual_length <= tc->size)
1302 {
1303 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1304 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1305 tc->offset += actual_length;
1306
1307 ftdi->readbuffer_offset = 0;
1308 ftdi->readbuffer_remaining = 0;
1309
1310 /* Did we read exactly the right amount of bytes? */
1311 if (tc->offset == tc->size)
1312 {
1313 //printf("read_data exact rem %d offset %d\n",
1314 //ftdi->readbuffer_remaining, offset);
1315 tc->completed = 1;
1316 return;
1317 }
1318 }
1319 else
1320 {
1321 // only copy part of the data or size <= readbuffer_chunksize
1322 int part_size = tc->size - tc->offset;
1323 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1324 tc->offset += part_size;
1325
1326 ftdi->readbuffer_offset += part_size;
1327 ftdi->readbuffer_remaining = actual_length - part_size;
1328
1329 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1330 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1331 tc->completed = 1;
1332 return;
1333 }
1334 }
1335 }
1336 ret = libusb_submit_transfer (transfer);
1337 if (ret < 0)
1338 tc->completed = 1;
1339}
1340
1341
1342static void ftdi_write_data_cb(struct libusb_transfer *transfer)
1343{
1344 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1345 struct ftdi_context *ftdi = tc->ftdi;
1346
1347 tc->offset += transfer->actual_length;
1348
1349 if (tc->offset == tc->size)
1350 {
1351 tc->completed = 1;
1352 }
1353 else
1354 {
1355 int write_size = ftdi->writebuffer_chunksize;
1356 int ret;
1357
1358 if (tc->offset + write_size > tc->size)
1359 write_size = tc->size - tc->offset;
1360
1361 transfer->length = write_size;
1362 transfer->buffer = tc->buf + tc->offset;
1363 ret = libusb_submit_transfer (transfer);
1364 if (ret < 0)
1365 tc->completed = 1;
1366 }
1367}
1368
1369
1370/**
1371 Writes data to the chip. Does not wait for completion of the transfer
1372 nor does it make sure that the transfer was successful.
1373
1374 Use libusb 1.0 asynchronous API.
1375
1376 \param ftdi pointer to ftdi_context
1377 \param buf Buffer with the data
1378 \param size Size of the buffer
1379
1380 \retval NULL: Some error happens when submit transfer
1381 \retval !NULL: Pointer to a ftdi_transfer_control
1382*/
1383
1384struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1385{
1386 struct ftdi_transfer_control *tc;
1387 struct libusb_transfer *transfer;
1388 int write_size, ret;
1389
1390 if (ftdi == NULL || ftdi->usb_dev == NULL)
1391 return NULL;
1392
1393 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1394 if (!tc)
1395 return NULL;
1396
1397 transfer = libusb_alloc_transfer(0);
1398 if (!transfer)
1399 {
1400 free(tc);
1401 return NULL;
1402 }
1403
1404 tc->ftdi = ftdi;
1405 tc->completed = 0;
1406 tc->buf = buf;
1407 tc->size = size;
1408 tc->offset = 0;
1409
1410 if (size < ftdi->writebuffer_chunksize)
1411 write_size = size;
1412 else
1413 write_size = ftdi->writebuffer_chunksize;
1414
1415 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1416 write_size, ftdi_write_data_cb, tc,
1417 ftdi->usb_write_timeout);
1418 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1419
1420 ret = libusb_submit_transfer(transfer);
1421 if (ret < 0)
1422 {
1423 libusb_free_transfer(transfer);
1424 free(tc);
1425 return NULL;
1426 }
1427 tc->transfer = transfer;
1428
1429 return tc;
1430}
1431
1432/**
1433 Reads data from the chip. Does not wait for completion of the transfer
1434 nor does it make sure that the transfer was successful.
1435
1436 Use libusb 1.0 asynchronous API.
1437
1438 \param ftdi pointer to ftdi_context
1439 \param buf Buffer with the data
1440 \param size Size of the buffer
1441
1442 \retval NULL: Some error happens when submit transfer
1443 \retval !NULL: Pointer to a ftdi_transfer_control
1444*/
1445
1446struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1447{
1448 struct ftdi_transfer_control *tc;
1449 struct libusb_transfer *transfer;
1450 int ret;
1451
1452 if (ftdi == NULL || ftdi->usb_dev == NULL)
1453 return NULL;
1454
1455 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1456 if (!tc)
1457 return NULL;
1458
1459 tc->ftdi = ftdi;
1460 tc->buf = buf;
1461 tc->size = size;
1462
1463 if (size <= ftdi->readbuffer_remaining)
1464 {
1465 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1466
1467 // Fix offsets
1468 ftdi->readbuffer_remaining -= size;
1469 ftdi->readbuffer_offset += size;
1470
1471 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1472
1473 tc->completed = 1;
1474 tc->offset = size;
1475 tc->transfer = NULL;
1476 return tc;
1477 }
1478
1479 tc->completed = 0;
1480 if (ftdi->readbuffer_remaining != 0)
1481 {
1482 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1483
1484 tc->offset = ftdi->readbuffer_remaining;
1485 }
1486 else
1487 tc->offset = 0;
1488
1489 transfer = libusb_alloc_transfer(0);
1490 if (!transfer)
1491 {
1492 free (tc);
1493 return NULL;
1494 }
1495
1496 ftdi->readbuffer_remaining = 0;
1497 ftdi->readbuffer_offset = 0;
1498
1499 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1500 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1501
1502 ret = libusb_submit_transfer(transfer);
1503 if (ret < 0)
1504 {
1505 libusb_free_transfer(transfer);
1506 free (tc);
1507 return NULL;
1508 }
1509 tc->transfer = transfer;
1510
1511 return tc;
1512}
1513
1514/**
1515 Wait for completion of the transfer.
1516
1517 Use libusb 1.0 asynchronous API.
1518
1519 \param tc pointer to ftdi_transfer_control
1520
1521 \retval < 0: Some error happens
1522 \retval >= 0: Data size transferred
1523*/
1524
1525int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1526{
1527 int ret;
1528
1529 while (!tc->completed)
1530 {
1531 ret = libusb_handle_events(tc->ftdi->usb_ctx);
1532 if (ret < 0)
1533 {
1534 if (ret == LIBUSB_ERROR_INTERRUPTED)
1535 continue;
1536 libusb_cancel_transfer(tc->transfer);
1537 while (!tc->completed)
1538 if (libusb_handle_events(tc->ftdi->usb_ctx) < 0)
1539 break;
1540 libusb_free_transfer(tc->transfer);
1541 free (tc);
1542 return ret;
1543 }
1544 }
1545
1546 ret = tc->offset;
1547 /**
1548 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1549 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1550 **/
1551 if (tc->transfer)
1552 {
1553 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1554 ret = -1;
1555 libusb_free_transfer(tc->transfer);
1556 }
1557 free(tc);
1558 return ret;
1559}
1560
1561/**
1562 Configure write buffer chunk size.
1563 Default is 4096.
1564
1565 \param ftdi pointer to ftdi_context
1566 \param chunksize Chunk size
1567
1568 \retval 0: all fine
1569 \retval -1: ftdi context invalid
1570*/
1571int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1572{
1573 if (ftdi == NULL)
1574 ftdi_error_return(-1, "ftdi context invalid");
1575
1576 ftdi->writebuffer_chunksize = chunksize;
1577 return 0;
1578}
1579
1580/**
1581 Get write buffer chunk size.
1582
1583 \param ftdi pointer to ftdi_context
1584 \param chunksize Pointer to store chunk size in
1585
1586 \retval 0: all fine
1587 \retval -1: ftdi context invalid
1588*/
1589int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1590{
1591 if (ftdi == NULL)
1592 ftdi_error_return(-1, "ftdi context invalid");
1593
1594 *chunksize = ftdi->writebuffer_chunksize;
1595 return 0;
1596}
1597
1598/**
1599 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
1600
1601 Automatically strips the two modem status bytes transfered during every read.
1602
1603 \param ftdi pointer to ftdi_context
1604 \param buf Buffer to store data in
1605 \param size Size of the buffer
1606
1607 \retval -666: USB device unavailable
1608 \retval <0: error code from libusb_bulk_transfer()
1609 \retval 0: no data was available
1610 \retval >0: number of bytes read
1611
1612*/
1613int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
1614{
1615 int offset = 0, ret, i, num_of_chunks, chunk_remains;
1616 int packet_size = ftdi->max_packet_size;
1617 int actual_length = 1;
1618
1619 if (ftdi == NULL || ftdi->usb_dev == NULL)
1620 ftdi_error_return(-666, "USB device unavailable");
1621
1622 // Packet size sanity check (avoid division by zero)
1623 if (packet_size == 0)
1624 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
1625
1626 // everything we want is still in the readbuffer?
1627 if (size <= ftdi->readbuffer_remaining)
1628 {
1629 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1630
1631 // Fix offsets
1632 ftdi->readbuffer_remaining -= size;
1633 ftdi->readbuffer_offset += size;
1634
1635 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1636
1637 return size;
1638 }
1639 // something still in the readbuffer, but not enough to satisfy 'size'?
1640 if (ftdi->readbuffer_remaining != 0)
1641 {
1642 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1643
1644 // Fix offset
1645 offset += ftdi->readbuffer_remaining;
1646 }
1647 // do the actual USB read
1648 while (offset < size && actual_length > 0)
1649 {
1650 ftdi->readbuffer_remaining = 0;
1651 ftdi->readbuffer_offset = 0;
1652 /* returns how much received */
1653 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
1654 if (ret < 0)
1655 ftdi_error_return(ret, "usb bulk read failed");
1656
1657 if (actual_length > 2)
1658 {
1659 // skip FTDI status bytes.
1660 // Maybe stored in the future to enable modem use
1661 num_of_chunks = actual_length / packet_size;
1662 chunk_remains = actual_length % packet_size;
1663 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1664
1665 ftdi->readbuffer_offset += 2;
1666 actual_length -= 2;
1667
1668 if (actual_length > packet_size - 2)
1669 {
1670 for (i = 1; i < num_of_chunks; i++)
1671 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1672 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1673 packet_size - 2);
1674 if (chunk_remains > 2)
1675 {
1676 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1677 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1678 chunk_remains-2);
1679 actual_length -= 2*num_of_chunks;
1680 }
1681 else
1682 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1683 }
1684 }
1685 else if (actual_length <= 2)
1686 {
1687 // no more data to read?
1688 return offset;
1689 }
1690 if (actual_length > 0)
1691 {
1692 // data still fits in buf?
1693 if (offset+actual_length <= size)
1694 {
1695 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
1696 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1697 offset += actual_length;
1698
1699 /* Did we read exactly the right amount of bytes? */
1700 if (offset == size)
1701 //printf("read_data exact rem %d offset %d\n",
1702 //ftdi->readbuffer_remaining, offset);
1703 return offset;
1704 }
1705 else
1706 {
1707 // only copy part of the data or size <= readbuffer_chunksize
1708 int part_size = size-offset;
1709 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
1710
1711 ftdi->readbuffer_offset += part_size;
1712 ftdi->readbuffer_remaining = actual_length-part_size;
1713 offset += part_size;
1714
1715 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1716 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1717
1718 return offset;
1719 }
1720 }
1721 }
1722 // never reached
1723 return -127;
1724}
1725
1726/**
1727 Configure read buffer chunk size.
1728 Default is 4096.
1729
1730 Automatically reallocates the buffer.
1731
1732 \param ftdi pointer to ftdi_context
1733 \param chunksize Chunk size
1734
1735 \retval 0: all fine
1736 \retval -1: ftdi context invalid
1737*/
1738int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1739{
1740 unsigned char *new_buf;
1741
1742 if (ftdi == NULL)
1743 ftdi_error_return(-1, "ftdi context invalid");
1744
1745 // Invalidate all remaining data
1746 ftdi->readbuffer_offset = 0;
1747 ftdi->readbuffer_remaining = 0;
1748#ifdef __linux__
1749 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
1750 which is defined in libusb-1.0. Otherwise, each USB read request will
1751 be divided into multiple URBs. This will cause issues on Linux kernel
1752 older than 2.6.32. */
1753 if (chunksize > 16384)
1754 chunksize = 16384;
1755#endif
1756
1757 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
1758 ftdi_error_return(-1, "out of memory for readbuffer");
1759
1760 ftdi->readbuffer = new_buf;
1761 ftdi->readbuffer_chunksize = chunksize;
1762
1763 return 0;
1764}
1765
1766/**
1767 Get read buffer chunk size.
1768
1769 \param ftdi pointer to ftdi_context
1770 \param chunksize Pointer to store chunk size in
1771
1772 \retval 0: all fine
1773 \retval -1: FTDI context invalid
1774*/
1775int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1776{
1777 if (ftdi == NULL)
1778 ftdi_error_return(-1, "FTDI context invalid");
1779
1780 *chunksize = ftdi->readbuffer_chunksize;
1781 return 0;
1782}
1783
1784
1785/**
1786 Enable bitbang mode.
1787
1788 \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead
1789
1790 \param ftdi pointer to ftdi_context
1791 \param bitmask Bitmask to configure lines.
1792 HIGH/ON value configures a line as output.
1793
1794 \retval 0: all fine
1795 \retval -1: can't enable bitbang mode
1796 \retval -2: USB device unavailable
1797*/
1798int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
1799{
1800 unsigned short usb_val;
1801
1802 if (ftdi == NULL || ftdi->usb_dev == NULL)
1803 ftdi_error_return(-2, "USB device unavailable");
1804
1805 usb_val = bitmask; // low byte: bitmask
1806 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
1807 usb_val |= (ftdi->bitbang_mode << 8);
1808
1809 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1810 SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index,
1811 NULL, 0, ftdi->usb_write_timeout) < 0)
1812 ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?");
1813
1814 ftdi->bitbang_enabled = 1;
1815 return 0;
1816}
1817
1818/**
1819 Disable bitbang mode.
1820
1821 \param ftdi pointer to ftdi_context
1822
1823 \retval 0: all fine
1824 \retval -1: can't disable bitbang mode
1825 \retval -2: USB device unavailable
1826*/
1827int ftdi_disable_bitbang(struct ftdi_context *ftdi)
1828{
1829 if (ftdi == NULL || ftdi->usb_dev == NULL)
1830 ftdi_error_return(-2, "USB device unavailable");
1831
1832 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1833 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
1834
1835 ftdi->bitbang_enabled = 0;
1836 return 0;
1837}
1838
1839/**
1840 Enable/disable bitbang modes.
1841
1842 \param ftdi pointer to ftdi_context
1843 \param bitmask Bitmask to configure lines.
1844 HIGH/ON value configures a line as output.
1845 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
1846
1847 \retval 0: all fine
1848 \retval -1: can't enable bitbang mode
1849 \retval -2: USB device unavailable
1850*/
1851int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
1852{
1853 unsigned short usb_val;
1854
1855 if (ftdi == NULL || ftdi->usb_dev == NULL)
1856 ftdi_error_return(-2, "USB device unavailable");
1857
1858 usb_val = bitmask; // low byte: bitmask
1859 usb_val |= (mode << 8);
1860 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1861 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?");
1862
1863 ftdi->bitbang_mode = mode;
1864 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
1865 return 0;
1866}
1867
1868/**
1869 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
1870
1871 \param ftdi pointer to ftdi_context
1872 \param pins Pointer to store pins into
1873
1874 \retval 0: all fine
1875 \retval -1: read pins failed
1876 \retval -2: USB device unavailable
1877*/
1878int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
1879{
1880 if (ftdi == NULL || ftdi->usb_dev == NULL)
1881 ftdi_error_return(-2, "USB device unavailable");
1882
1883 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
1884 ftdi_error_return(-1, "read pins failed");
1885
1886 return 0;
1887}
1888
1889/**
1890 Set latency timer
1891
1892 The FTDI chip keeps data in the internal buffer for a specific
1893 amount of time if the buffer is not full yet to decrease
1894 load on the usb bus.
1895
1896 \param ftdi pointer to ftdi_context
1897 \param latency Value between 1 and 255
1898
1899 \retval 0: all fine
1900 \retval -1: latency out of range
1901 \retval -2: unable to set latency timer
1902 \retval -3: USB device unavailable
1903*/
1904int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
1905{
1906 unsigned short usb_val;
1907
1908 if (latency < 1)
1909 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
1910
1911 if (ftdi == NULL || ftdi->usb_dev == NULL)
1912 ftdi_error_return(-3, "USB device unavailable");
1913
1914 usb_val = latency;
1915 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1916 ftdi_error_return(-2, "unable to set latency timer");
1917
1918 return 0;
1919}
1920
1921/**
1922 Get latency timer
1923
1924 \param ftdi pointer to ftdi_context
1925 \param latency Pointer to store latency value in
1926
1927 \retval 0: all fine
1928 \retval -1: unable to get latency timer
1929 \retval -2: USB device unavailable
1930*/
1931int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
1932{
1933 unsigned short usb_val;
1934
1935 if (ftdi == NULL || ftdi->usb_dev == NULL)
1936 ftdi_error_return(-2, "USB device unavailable");
1937
1938 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
1939 ftdi_error_return(-1, "reading latency timer failed");
1940
1941 *latency = (unsigned char)usb_val;
1942 return 0;
1943}
1944
1945/**
1946 Poll modem status information
1947
1948 This function allows the retrieve the two status bytes of the device.
1949 The device sends these bytes also as a header for each read access
1950 where they are discarded by ftdi_read_data(). The chip generates
1951 the two stripped status bytes in the absence of data every 40 ms.
1952
1953 Layout of the first byte:
1954 - B0..B3 - must be 0
1955 - B4 Clear to send (CTS)
1956 0 = inactive
1957 1 = active
1958 - B5 Data set ready (DTS)
1959 0 = inactive
1960 1 = active
1961 - B6 Ring indicator (RI)
1962 0 = inactive
1963 1 = active
1964 - B7 Receive line signal detect (RLSD)
1965 0 = inactive
1966 1 = active
1967
1968 Layout of the second byte:
1969 - B0 Data ready (DR)
1970 - B1 Overrun error (OE)
1971 - B2 Parity error (PE)
1972 - B3 Framing error (FE)
1973 - B4 Break interrupt (BI)
1974 - B5 Transmitter holding register (THRE)
1975 - B6 Transmitter empty (TEMT)
1976 - B7 Error in RCVR FIFO
1977
1978 \param ftdi pointer to ftdi_context
1979 \param status Pointer to store status information in. Must be two bytes.
1980
1981 \retval 0: all fine
1982 \retval -1: unable to retrieve status information
1983 \retval -2: USB device unavailable
1984*/
1985int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
1986{
1987 char usb_val[2];
1988
1989 if (ftdi == NULL || ftdi->usb_dev == NULL)
1990 ftdi_error_return(-2, "USB device unavailable");
1991
1992 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
1993 ftdi_error_return(-1, "getting modem status failed");
1994
1995 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
1996
1997 return 0;
1998}
1999
2000/**
2001 Set flowcontrol for ftdi chip
2002
2003 \param ftdi pointer to ftdi_context
2004 \param flowctrl flow control to use. should be
2005 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS
2006
2007 \retval 0: all fine
2008 \retval -1: set flow control failed
2009 \retval -2: USB device unavailable
2010*/
2011int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2012{
2013 if (ftdi == NULL || ftdi->usb_dev == NULL)
2014 ftdi_error_return(-2, "USB device unavailable");
2015
2016 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2017 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2018 NULL, 0, ftdi->usb_write_timeout) < 0)
2019 ftdi_error_return(-1, "set flow control failed");
2020
2021 return 0;
2022}
2023
2024/**
2025 Set dtr line
2026
2027 \param ftdi pointer to ftdi_context
2028 \param state state to set line to (1 or 0)
2029
2030 \retval 0: all fine
2031 \retval -1: set dtr failed
2032 \retval -2: USB device unavailable
2033*/
2034int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2035{
2036 unsigned short usb_val;
2037
2038 if (ftdi == NULL || ftdi->usb_dev == NULL)
2039 ftdi_error_return(-2, "USB device unavailable");
2040
2041 if (state)
2042 usb_val = SIO_SET_DTR_HIGH;
2043 else
2044 usb_val = SIO_SET_DTR_LOW;
2045
2046 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2047 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2048 NULL, 0, ftdi->usb_write_timeout) < 0)
2049 ftdi_error_return(-1, "set dtr failed");
2050
2051 return 0;
2052}
2053
2054/**
2055 Set rts line
2056
2057 \param ftdi pointer to ftdi_context
2058 \param state state to set line to (1 or 0)
2059
2060 \retval 0: all fine
2061 \retval -1: set rts failed
2062 \retval -2: USB device unavailable
2063*/
2064int ftdi_setrts(struct ftdi_context *ftdi, int state)
2065{
2066 unsigned short usb_val;
2067
2068 if (ftdi == NULL || ftdi->usb_dev == NULL)
2069 ftdi_error_return(-2, "USB device unavailable");
2070
2071 if (state)
2072 usb_val = SIO_SET_RTS_HIGH;
2073 else
2074 usb_val = SIO_SET_RTS_LOW;
2075
2076 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2077 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2078 NULL, 0, ftdi->usb_write_timeout) < 0)
2079 ftdi_error_return(-1, "set of rts failed");
2080
2081 return 0;
2082}
2083
2084/**
2085 Set dtr and rts line in one pass
2086
2087 \param ftdi pointer to ftdi_context
2088 \param dtr DTR state to set line to (1 or 0)
2089 \param rts RTS state to set line to (1 or 0)
2090
2091 \retval 0: all fine
2092 \retval -1: set dtr/rts failed
2093 \retval -2: USB device unavailable
2094 */
2095int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2096{
2097 unsigned short usb_val;
2098
2099 if (ftdi == NULL || ftdi->usb_dev == NULL)
2100 ftdi_error_return(-2, "USB device unavailable");
2101
2102 if (dtr)
2103 usb_val = SIO_SET_DTR_HIGH;
2104 else
2105 usb_val = SIO_SET_DTR_LOW;
2106
2107 if (rts)
2108 usb_val |= SIO_SET_RTS_HIGH;
2109 else
2110 usb_val |= SIO_SET_RTS_LOW;
2111
2112 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2113 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2114 NULL, 0, ftdi->usb_write_timeout) < 0)
2115 ftdi_error_return(-1, "set of rts/dtr failed");
2116
2117 return 0;
2118}
2119
2120/**
2121 Set the special event character
2122
2123 \param ftdi pointer to ftdi_context
2124 \param eventch Event character
2125 \param enable 0 to disable the event character, non-zero otherwise
2126
2127 \retval 0: all fine
2128 \retval -1: unable to set event character
2129 \retval -2: USB device unavailable
2130*/
2131int ftdi_set_event_char(struct ftdi_context *ftdi,
2132 unsigned char eventch, unsigned char enable)
2133{
2134 unsigned short usb_val;
2135
2136 if (ftdi == NULL || ftdi->usb_dev == NULL)
2137 ftdi_error_return(-2, "USB device unavailable");
2138
2139 usb_val = eventch;
2140 if (enable)
2141 usb_val |= 1 << 8;
2142
2143 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2144 ftdi_error_return(-1, "setting event character failed");
2145
2146 return 0;
2147}
2148
2149/**
2150 Set error character
2151
2152 \param ftdi pointer to ftdi_context
2153 \param errorch Error character
2154 \param enable 0 to disable the error character, non-zero otherwise
2155
2156 \retval 0: all fine
2157 \retval -1: unable to set error character
2158 \retval -2: USB device unavailable
2159*/
2160int ftdi_set_error_char(struct ftdi_context *ftdi,
2161 unsigned char errorch, unsigned char enable)
2162{
2163 unsigned short usb_val;
2164
2165 if (ftdi == NULL || ftdi->usb_dev == NULL)
2166 ftdi_error_return(-2, "USB device unavailable");
2167
2168 usb_val = errorch;
2169 if (enable)
2170 usb_val |= 1 << 8;
2171
2172 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2173 ftdi_error_return(-1, "setting error character failed");
2174
2175 return 0;
2176}
2177
2178/**
2179 Init eeprom with default values.
2180 \param ftdi pointer to ftdi_context
2181 \param manufacturer String to use as Manufacturer
2182 \param product String to use as Product description
2183 \param serial String to use as Serial number description
2184
2185 \retval 0: all fine
2186 \retval -1: No struct ftdi_context
2187 \retval -2: No struct ftdi_eeprom
2188*/
2189int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer,
2190 char * product, char * serial)
2191{
2192 struct ftdi_eeprom *eeprom;
2193
2194 if (ftdi == NULL)
2195 ftdi_error_return(-1, "No struct ftdi_context");
2196
2197 if (ftdi->eeprom == NULL)
2198 ftdi_error_return(-2,"No struct ftdi_eeprom");
2199
2200 eeprom = ftdi->eeprom;
2201 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2202
2203 eeprom->vendor_id = 0x0403;
2204 eeprom->use_serial = USE_SERIAL_NUM;
2205 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2206 (ftdi->type == TYPE_R))
2207 eeprom->product_id = 0x6001;
2208 else
2209 eeprom->product_id = 0x6010;
2210 if (ftdi->type == TYPE_AM)
2211 eeprom->usb_version = 0x0101;
2212 else
2213 eeprom->usb_version = 0x0200;
2214 eeprom->max_power = 100;
2215
2216 if (eeprom->manufacturer)
2217 free (eeprom->manufacturer);
2218 eeprom->manufacturer = NULL;
2219 if (manufacturer)
2220 {
2221 eeprom->manufacturer = malloc(strlen(manufacturer)+1);
2222 if (eeprom->manufacturer)
2223 strcpy(eeprom->manufacturer, manufacturer);
2224 }
2225
2226 if (eeprom->product)
2227 free (eeprom->product);
2228 eeprom->product = NULL;
2229 {
2230 eeprom->product = malloc(strlen(product)+1);
2231 if (eeprom->product)
2232 strcpy(eeprom->product, product);
2233 }
2234
2235 if (eeprom->serial)
2236 free (eeprom->serial);
2237 eeprom->serial = NULL;
2238 if (serial)
2239 {
2240 eeprom->serial = malloc(strlen(serial)+1);
2241 if (eeprom->serial)
2242 strcpy(eeprom->serial, serial);
2243 }
2244
2245
2246 if (ftdi->type == TYPE_R)
2247 {
2248 eeprom->max_power = 90;
2249 eeprom->size = 0x80;
2250 eeprom->cbus_function[0] = CBUS_TXLED;
2251 eeprom->cbus_function[1] = CBUS_RXLED;
2252 eeprom->cbus_function[2] = CBUS_TXDEN;
2253 eeprom->cbus_function[3] = CBUS_PWREN;
2254 eeprom->cbus_function[4] = CBUS_SLEEP;
2255 }
2256 else
2257 eeprom->size = -1;
2258 return 0;
2259}
2260
2261/**
2262 Build binary buffer from ftdi_eeprom structure.
2263 Output is suitable for ftdi_write_eeprom().
2264
2265 \param ftdi pointer to ftdi_context
2266
2267 \retval >=0: size of eeprom user area in bytes
2268 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2269 \retval -2: Invalid eeprom or ftdi pointer
2270 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2271 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2272 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2273 \retval -6: No connected EEPROM or EEPROM Type unknown
2274*/
2275int ftdi_eeprom_build(struct ftdi_context *ftdi)
2276{
2277 unsigned char i, j, eeprom_size_mask;
2278 unsigned short checksum, value;
2279 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2280 int user_area_size;
2281 struct ftdi_eeprom *eeprom;
2282 unsigned char * output;
2283
2284 if (ftdi == NULL)
2285 ftdi_error_return(-2,"No context");
2286 if (ftdi->eeprom == NULL)
2287 ftdi_error_return(-2,"No eeprom structure");
2288
2289 eeprom= ftdi->eeprom;
2290 output = eeprom->buf;
2291
2292 if (eeprom->chip == -1)
2293 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2294
2295 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2296 eeprom->size = 0x100;
2297 else
2298 eeprom->size = 0x80;
2299
2300 if (eeprom->manufacturer != NULL)
2301 manufacturer_size = strlen(eeprom->manufacturer);
2302 if (eeprom->product != NULL)
2303 product_size = strlen(eeprom->product);
2304 if (eeprom->serial != NULL)
2305 serial_size = strlen(eeprom->serial);
2306
2307 // eeprom size check
2308 switch (ftdi->type)
2309 {
2310 case TYPE_AM:
2311 case TYPE_BM:
2312 user_area_size = 96; // base size for strings (total of 48 characters)
2313 break;
2314 case TYPE_2232C:
2315 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2316 break;
2317 case TYPE_R:
2318 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2319 break;
2320 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2321 case TYPE_4232H:
2322 user_area_size = 86;
2323 break;
2324 default:
2325 user_area_size = 0;
2326 break;
2327 }
2328 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
2329
2330 if (user_area_size < 0)
2331 ftdi_error_return(-1,"eeprom size exceeded");
2332
2333 // empty eeprom
2334 memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
2335
2336 // Bytes and Bits set for all Types
2337
2338 // Addr 02: Vendor ID
2339 output[0x02] = eeprom->vendor_id;
2340 output[0x03] = eeprom->vendor_id >> 8;
2341
2342 // Addr 04: Product ID
2343 output[0x04] = eeprom->product_id;
2344 output[0x05] = eeprom->product_id >> 8;
2345
2346 // Addr 06: Device release number (0400h for BM features)
2347 output[0x06] = 0x00;
2348 switch (ftdi->type)
2349 {
2350 case TYPE_AM:
2351 output[0x07] = 0x02;
2352 break;
2353 case TYPE_BM:
2354 output[0x07] = 0x04;
2355 break;
2356 case TYPE_2232C:
2357 output[0x07] = 0x05;
2358 break;
2359 case TYPE_R:
2360 output[0x07] = 0x06;
2361 break;
2362 case TYPE_2232H:
2363 output[0x07] = 0x07;
2364 break;
2365 case TYPE_4232H:
2366 output[0x07] = 0x08;
2367 break;
2368 default:
2369 output[0x07] = 0x00;
2370 }
2371
2372 // Addr 08: Config descriptor
2373 // Bit 7: always 1
2374 // Bit 6: 1 if this device is self powered, 0 if bus powered
2375 // Bit 5: 1 if this device uses remote wakeup
2376 // Bit 4-0: reserved - 0
2377 j = 0x80;
2378 if (eeprom->self_powered == 1)
2379 j |= 0x40;
2380 if (eeprom->remote_wakeup == 1)
2381 j |= 0x20;
2382 output[0x08] = j;
2383
2384 // Addr 09: Max power consumption: max power = value * 2 mA
2385 output[0x09] = eeprom->max_power>>1;
2386
2387 if (ftdi->type != TYPE_AM)
2388 {
2389 // Addr 0A: Chip configuration
2390 // Bit 7: 0 - reserved
2391 // Bit 6: 0 - reserved
2392 // Bit 5: 0 - reserved
2393 // Bit 4: 1 - Change USB version
2394 // Bit 3: 1 - Use the serial number string
2395 // Bit 2: 1 - Enable suspend pull downs for lower power
2396 // Bit 1: 1 - Out EndPoint is Isochronous
2397 // Bit 0: 1 - In EndPoint is Isochronous
2398 //
2399 j = 0;
2400 if (eeprom->in_is_isochronous == 1)
2401 j = j | 1;
2402 if (eeprom->out_is_isochronous == 1)
2403 j = j | 2;
2404 output[0x0A] = j;
2405 }
2406
2407 // Dynamic content
2408 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
2409 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
2410 i = 0;
2411 switch (ftdi->type)
2412 {
2413 case TYPE_2232H:
2414 case TYPE_4232H:
2415 i += 2;
2416 case TYPE_R:
2417 i += 2;
2418 case TYPE_2232C:
2419 i += 2;
2420 case TYPE_AM:
2421 case TYPE_BM:
2422 i += 0x94;
2423 }
2424 /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */
2425 eeprom_size_mask = eeprom->size -1;
2426
2427 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2428 // Addr 0F: Length of manufacturer string
2429 // Output manufacturer
2430 output[0x0E] = i; // calculate offset
2431 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
2432 output[i & eeprom_size_mask] = 0x03, i++; // type: string
2433 for (j = 0; j < manufacturer_size; j++)
2434 {
2435 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
2436 output[i & eeprom_size_mask] = 0x00, i++;
2437 }
2438 output[0x0F] = manufacturer_size*2 + 2;
2439
2440 // Addr 10: Offset of the product string + 0x80, calculated later
2441 // Addr 11: Length of product string
2442 output[0x10] = i | 0x80; // calculate offset
2443 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
2444 output[i & eeprom_size_mask] = 0x03, i++;
2445 for (j = 0; j < product_size; j++)
2446 {
2447 output[i & eeprom_size_mask] = eeprom->product[j], i++;
2448 output[i & eeprom_size_mask] = 0x00, i++;
2449 }
2450 output[0x11] = product_size*2 + 2;
2451
2452 // Addr 12: Offset of the serial string + 0x80, calculated later
2453 // Addr 13: Length of serial string
2454 output[0x12] = i | 0x80; // calculate offset
2455 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
2456 output[i & eeprom_size_mask] = 0x03, i++;
2457 for (j = 0; j < serial_size; j++)
2458 {
2459 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
2460 output[i & eeprom_size_mask] = 0x00, i++;
2461 }
2462
2463 // Legacy port name and PnP fields for FT2232 and newer chips
2464 if (ftdi->type > TYPE_BM)
2465 {
2466 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
2467 i++;
2468 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
2469 i++;
2470 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
2471 i++;
2472 }
2473
2474 output[0x13] = serial_size*2 + 2;
2475
2476 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
2477 {
2478 if (eeprom->use_serial == USE_SERIAL_NUM )
2479 output[0x0A] |= USE_SERIAL_NUM;
2480 else
2481 output[0x0A] &= ~USE_SERIAL_NUM;
2482 }
2483
2484 /* Bytes and Bits specific to (some) types
2485 Write linear, as this allows easier fixing*/
2486 switch (ftdi->type)
2487 {
2488 case TYPE_AM:
2489 break;
2490 case TYPE_BM:
2491 output[0x0C] = eeprom->usb_version & 0xff;
2492 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2493 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2494 output[0x0A] |= USE_USB_VERSION_BIT;
2495 else
2496 output[0x0A] &= ~USE_USB_VERSION_BIT;
2497
2498 break;
2499 case TYPE_2232C:
2500
2501 output[0x00] = (eeprom->channel_a_type);
2502 if ( eeprom->channel_a_driver == DRIVER_VCP)
2503 output[0x00] |= DRIVER_VCP;
2504 else
2505 output[0x00] &= ~DRIVER_VCP;
2506
2507 if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE)
2508 output[0x00] |= HIGH_CURRENT_DRIVE;
2509 else
2510 output[0x00] &= ~HIGH_CURRENT_DRIVE;
2511
2512 output[0x01] = (eeprom->channel_b_type);
2513 if ( eeprom->channel_b_driver == DRIVER_VCP)
2514 output[0x01] |= DRIVER_VCP;
2515 else
2516 output[0x01] &= ~DRIVER_VCP;
2517
2518 if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE)
2519 output[0x01] |= HIGH_CURRENT_DRIVE;
2520 else
2521 output[0x01] &= ~HIGH_CURRENT_DRIVE;
2522
2523 if (eeprom->in_is_isochronous == 1)
2524 output[0x0A] |= 0x1;
2525 else
2526 output[0x0A] &= ~0x1;
2527 if (eeprom->out_is_isochronous == 1)
2528 output[0x0A] |= 0x2;
2529 else
2530 output[0x0A] &= ~0x2;
2531 if (eeprom->suspend_pull_downs == 1)
2532 output[0x0A] |= 0x4;
2533 else
2534 output[0x0A] &= ~0x4;
2535 if (eeprom->use_usb_version == USE_USB_VERSION_BIT)
2536 output[0x0A] |= USE_USB_VERSION_BIT;
2537 else
2538 output[0x0A] &= ~USE_USB_VERSION_BIT;
2539
2540 output[0x0C] = eeprom->usb_version & 0xff;
2541 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2542 output[0x14] = eeprom->chip;
2543 break;
2544 case TYPE_R:
2545 if (eeprom->high_current == HIGH_CURRENT_DRIVE_R)
2546 output[0x00] |= HIGH_CURRENT_DRIVE_R;
2547 output[0x01] = 0x40; /* Hard coded Endpoint Size*/
2548
2549 if (eeprom->suspend_pull_downs == 1)
2550 output[0x0A] |= 0x4;
2551 else
2552 output[0x0A] &= ~0x4;
2553 output[0x0B] = eeprom->invert;
2554 output[0x0C] = eeprom->usb_version & 0xff;
2555 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
2556
2557 if (eeprom->cbus_function[0] > CBUS_BB)
2558 output[0x14] = CBUS_TXLED;
2559 else
2560 output[0x14] = eeprom->cbus_function[0];
2561
2562 if (eeprom->cbus_function[1] > CBUS_BB)
2563 output[0x14] |= CBUS_RXLED<<4;
2564 else
2565 output[0x14] |= eeprom->cbus_function[1]<<4;
2566
2567 if (eeprom->cbus_function[2] > CBUS_BB)
2568 output[0x15] = CBUS_TXDEN;
2569 else
2570 output[0x15] = eeprom->cbus_function[2];
2571
2572 if (eeprom->cbus_function[3] > CBUS_BB)
2573 output[0x15] |= CBUS_PWREN<<4;
2574 else
2575 output[0x15] |= eeprom->cbus_function[3]<<4;
2576
2577 if (eeprom->cbus_function[4] > CBUS_CLK6)
2578 output[0x16] = CBUS_SLEEP;
2579 else
2580 output[0x16] = eeprom->cbus_function[4];
2581 break;
2582 case TYPE_2232H:
2583 output[0x00] = (eeprom->channel_a_type);
2584 if ( eeprom->channel_a_driver == DRIVER_VCP)
2585 output[0x00] |= DRIVER_VCP;
2586 else
2587 output[0x00] &= ~DRIVER_VCP;
2588
2589 output[0x01] = (eeprom->channel_b_type);
2590 if ( eeprom->channel_b_driver == DRIVER_VCP)
2591 output[0x01] |= DRIVER_VCP;
2592 else
2593 output[0x01] &= ~DRIVER_VCP;
2594 if (eeprom->suspend_dbus7 == SUSPEND_DBUS7_BIT)
2595 output[0x01] |= SUSPEND_DBUS7_BIT;
2596 else
2597 output[0x01] &= ~SUSPEND_DBUS7_BIT;
2598
2599 if (eeprom->suspend_pull_downs == 1)
2600 output[0x0A] |= 0x4;
2601 else
2602 output[0x0A] &= ~0x4;
2603
2604 if (eeprom->group0_drive > DRIVE_16MA)
2605 output[0x0c] |= DRIVE_16MA;
2606 else
2607 output[0x0c] |= eeprom->group0_drive;
2608 if (eeprom->group0_schmitt == IS_SCHMITT)
2609 output[0x0c] |= IS_SCHMITT;
2610 if (eeprom->group0_slew == SLOW_SLEW)
2611 output[0x0c] |= SLOW_SLEW;
2612
2613 if (eeprom->group1_drive > DRIVE_16MA)
2614 output[0x0c] |= DRIVE_16MA<<4;
2615 else
2616 output[0x0c] |= eeprom->group1_drive<<4;
2617 if (eeprom->group1_schmitt == IS_SCHMITT)
2618 output[0x0c] |= IS_SCHMITT<<4;
2619 if (eeprom->group1_slew == SLOW_SLEW)
2620 output[0x0c] |= SLOW_SLEW<<4;
2621
2622 if (eeprom->group2_drive > DRIVE_16MA)
2623 output[0x0d] |= DRIVE_16MA;
2624 else
2625 output[0x0d] |= eeprom->group2_drive;
2626 if (eeprom->group2_schmitt == IS_SCHMITT)
2627 output[0x0d] |= IS_SCHMITT;
2628 if (eeprom->group2_slew == SLOW_SLEW)
2629 output[0x0d] |= SLOW_SLEW;
2630
2631 if (eeprom->group3_drive > DRIVE_16MA)
2632 output[0x0d] |= DRIVE_16MA<<4;
2633 else
2634 output[0x0d] |= eeprom->group3_drive<<4;
2635 if (eeprom->group3_schmitt == IS_SCHMITT)
2636 output[0x0d] |= IS_SCHMITT<<4;
2637 if (eeprom->group3_slew == SLOW_SLEW)
2638 output[0x0d] |= SLOW_SLEW<<4;
2639
2640 output[0x18] = eeprom->chip;
2641
2642 break;
2643 case TYPE_4232H:
2644 fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n");
2645 }
2646
2647 // calculate checksum
2648 checksum = 0xAAAA;
2649
2650 for (i = 0; i < eeprom->size/2-1; i++)
2651 {
2652 value = output[i*2];
2653 value += output[(i*2)+1] << 8;
2654
2655 checksum = value^checksum;
2656 checksum = (checksum << 1) | (checksum >> 15);
2657 }
2658
2659 output[eeprom->size-2] = checksum;
2660 output[eeprom->size-1] = checksum >> 8;
2661
2662 return user_area_size;
2663}
2664
2665/**
2666 Decode binary EEPROM image into an ftdi_eeprom structure.
2667
2668 \param ftdi pointer to ftdi_context
2669 \param verbose Decode EEPROM on stdout
2670
2671 \retval 0: all fine
2672 \retval -1: something went wrong
2673
2674 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
2675 FIXME: Strings are malloc'ed here and should be freed somewhere
2676*/
2677int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
2678{
2679 unsigned char i, j;
2680 unsigned short checksum, eeprom_checksum, value;
2681 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2682 int eeprom_size;
2683 struct ftdi_eeprom *eeprom;
2684 unsigned char *buf = ftdi->eeprom->buf;
2685 int release;
2686
2687 if (ftdi == NULL)
2688 ftdi_error_return(-1,"No context");
2689 if (ftdi->eeprom == NULL)
2690 ftdi_error_return(-1,"No eeprom structure");
2691
2692 eeprom = ftdi->eeprom;
2693 eeprom_size = eeprom->size;
2694
2695 // Addr 02: Vendor ID
2696 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
2697
2698 // Addr 04: Product ID
2699 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
2700
2701 release = buf[0x06] + (buf[0x07]<<8);
2702
2703 // Addr 08: Config descriptor
2704 // Bit 7: always 1
2705 // Bit 6: 1 if this device is self powered, 0 if bus powered
2706 // Bit 5: 1 if this device uses remote wakeup
2707 eeprom->self_powered = buf[0x08] & 0x40;
2708 eeprom->remote_wakeup = buf[0x08] & 0x20;
2709
2710 // Addr 09: Max power consumption: max power = value * 2 mA
2711 eeprom->max_power = buf[0x09];
2712
2713 // Addr 0A: Chip configuration
2714 // Bit 7: 0 - reserved
2715 // Bit 6: 0 - reserved
2716 // Bit 5: 0 - reserved
2717 // Bit 4: 1 - Change USB version on BM and 2232C
2718 // Bit 3: 1 - Use the serial number string
2719 // Bit 2: 1 - Enable suspend pull downs for lower power
2720 // Bit 1: 1 - Out EndPoint is Isochronous
2721 // Bit 0: 1 - In EndPoint is Isochronous
2722 //
2723 eeprom->in_is_isochronous = buf[0x0A]&0x01;
2724 eeprom->out_is_isochronous = buf[0x0A]&0x02;
2725 eeprom->suspend_pull_downs = buf[0x0A]&0x04;
2726 eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM;
2727 eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT;
2728
2729 // Addr 0C: USB version low byte when 0x0A
2730 // Addr 0D: USB version high byte when 0x0A
2731 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
2732
2733 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
2734 // Addr 0F: Length of manufacturer string
2735 manufacturer_size = buf[0x0F]/2;
2736 if (eeprom->manufacturer)
2737 free(eeprom->manufacturer);
2738 if (manufacturer_size > 0)
2739 {
2740 eeprom->manufacturer = malloc(manufacturer_size);
2741 if (eeprom->manufacturer)
2742 {
2743 // Decode manufacturer
2744 i = buf[0x0E] & (eeprom_size -1); // offset
2745 for (j=0;j<manufacturer_size-1;j++)
2746 {
2747 eeprom->manufacturer[j] = buf[2*j+i+2];
2748 }
2749 eeprom->manufacturer[j] = '\0';
2750 }
2751 }
2752 else eeprom->manufacturer = NULL;
2753
2754 // Addr 10: Offset of the product string + 0x80, calculated later
2755 // Addr 11: Length of product string
2756 if (eeprom->product)
2757 free(eeprom->product);
2758 product_size = buf[0x11]/2;
2759 if (product_size > 0)
2760 {
2761 eeprom->product = malloc(product_size);
2762 if (eeprom->product)
2763 {
2764 // Decode product name
2765 i = buf[0x10] & (eeprom_size -1); // offset
2766 for (j=0;j<product_size-1;j++)
2767 {
2768 eeprom->product[j] = buf[2*j+i+2];
2769 }
2770 eeprom->product[j] = '\0';
2771 }
2772 }
2773 else eeprom->product = NULL;
2774
2775 // Addr 12: Offset of the serial string + 0x80, calculated later
2776 // Addr 13: Length of serial string
2777 if (eeprom->serial)
2778 free(eeprom->serial);
2779 serial_size = buf[0x13]/2;
2780 if (serial_size > 0)
2781 {
2782 eeprom->serial = malloc(serial_size);
2783 if (eeprom->serial)
2784 {
2785 // Decode serial
2786 i = buf[0x12] & (eeprom_size -1); // offset
2787 for (j=0;j<serial_size-1;j++)
2788 {
2789 eeprom->serial[j] = buf[2*j+i+2];
2790 }
2791 eeprom->serial[j] = '\0';
2792 }
2793 }
2794 else eeprom->serial = NULL;
2795
2796 // verify checksum
2797 checksum = 0xAAAA;
2798
2799 for (i = 0; i < eeprom_size/2-1; i++)
2800 {
2801 value = buf[i*2];
2802 value += buf[(i*2)+1] << 8;
2803
2804 checksum = value^checksum;
2805 checksum = (checksum << 1) | (checksum >> 15);
2806 }
2807
2808 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
2809
2810 if (eeprom_checksum != checksum)
2811 {
2812 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
2813 ftdi_error_return(-1,"EEPROM checksum error");
2814 }
2815
2816 eeprom->channel_a_type = 0;
2817 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
2818 {
2819 eeprom->chip = -1;
2820 }
2821 else if (ftdi->type == TYPE_2232C)
2822 {
2823 eeprom->channel_a_type = buf[0x00] & 0x7;
2824 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2825 eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE;
2826 eeprom->channel_b_type = buf[0x01] & 0x7;
2827 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2828 eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE;
2829 eeprom->chip = buf[0x14];
2830 }
2831 else if (ftdi->type == TYPE_R)
2832 {
2833 /* TYPE_R flags D2XX, not VCP as all others*/
2834 eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP;
2835 eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R;
2836 if ( (buf[0x01]&0x40) != 0x40)
2837 fprintf(stderr,
2838 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
2839 " If this happened with the\n"
2840 " EEPROM programmed by FTDI tools, please report "
2841 "to libftdi@developer.intra2net.com\n");
2842
2843 eeprom->chip = buf[0x16];
2844 // Addr 0B: Invert data lines
2845 // Works only on FT232R, not FT245R, but no way to distinguish
2846 eeprom->invert = buf[0x0B];
2847 // Addr 14: CBUS function: CBUS0, CBUS1
2848 // Addr 15: CBUS function: CBUS2, CBUS3
2849 // Addr 16: CBUS function: CBUS5
2850 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
2851 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
2852 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
2853 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
2854 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
2855 }
2856 else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H))
2857 {
2858 eeprom->channel_a_type = buf[0x00] & 0x7;
2859 eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP;
2860 eeprom->channel_b_type = buf[0x01] & 0x7;
2861 eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP;
2862
2863 if (ftdi->type == TYPE_2232H)
2864 eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7_BIT;
2865
2866 eeprom->chip = buf[0x18];
2867 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA;
2868 eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT;
2869 eeprom->group0_slew = buf[0x0c] & SLOW_SLEW;
2870 eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3;
2871 eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT;
2872 eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW;
2873 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA;
2874 eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT;
2875 eeprom->group2_slew = buf[0x0d] & SLOW_SLEW;
2876 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA;
2877 eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT;
2878 eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW;
2879 }
2880
2881 if (verbose)
2882 {
2883 char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"};
2884 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
2885 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
2886 fprintf(stdout, "Release: 0x%04x\n",release);
2887
2888 if (eeprom->self_powered)
2889 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
2890 else
2891 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2,
2892 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
2893 if (eeprom->manufacturer)
2894 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
2895 if (eeprom->product)
2896 fprintf(stdout, "Product: %s\n",eeprom->product);
2897 if (eeprom->serial)
2898 fprintf(stdout, "Serial: %s\n",eeprom->serial);
2899 fprintf(stdout, "Checksum : %04x\n", checksum);
2900 if (ftdi->type == TYPE_R)
2901 fprintf(stdout, "Internal EEPROM\n");
2902 else if (eeprom->chip >= 0x46)
2903 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
2904 if (eeprom->suspend_dbus7)
2905 fprintf(stdout, "Suspend on DBUS7\n");
2906 if (eeprom->suspend_pull_downs)
2907 fprintf(stdout, "Pull IO pins low during suspend\n");
2908 if (eeprom->remote_wakeup)
2909 fprintf(stdout, "Enable Remote Wake Up\n");
2910 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
2911 if (ftdi->type >= TYPE_2232C)
2912 fprintf(stdout,"Channel A has Mode %s%s%s\n",
2913 channel_mode[eeprom->channel_a_type],
2914 (eeprom->channel_a_driver)?" VCP":"",
2915 (eeprom->high_current_a)?" High Current IO":"");
2916 if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R))
2917 fprintf(stdout,"Channel B has Mode %s%s%s\n",
2918 channel_mode[eeprom->channel_b_type],
2919 (eeprom->channel_b_driver)?" VCP":"",
2920 (eeprom->high_current_b)?" High Current IO":"");
2921 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
2922 eeprom->use_usb_version == USE_USB_VERSION_BIT)
2923 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
2924
2925 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
2926 {
2927 fprintf(stdout,"%s has %d mA drive%s%s\n",
2928 (ftdi->type == TYPE_2232H)?"AL":"A",
2929 (eeprom->group0_drive+1) *4,
2930 (eeprom->group0_schmitt)?" Schmitt Input":"",
2931 (eeprom->group0_slew)?" Slow Slew":"");
2932 fprintf(stdout,"%s has %d mA drive%s%s\n",
2933 (ftdi->type == TYPE_2232H)?"AH":"B",
2934 (eeprom->group1_drive+1) *4,
2935 (eeprom->group1_schmitt)?" Schmitt Input":"",
2936 (eeprom->group1_slew)?" Slow Slew":"");
2937 fprintf(stdout,"%s has %d mA drive%s%s\n",
2938 (ftdi->type == TYPE_2232H)?"BL":"C",
2939 (eeprom->group2_drive+1) *4,
2940 (eeprom->group2_schmitt)?" Schmitt Input":"",
2941 (eeprom->group2_slew)?" Slow Slew":"");
2942 fprintf(stdout,"%s has %d mA drive%s%s\n",
2943 (ftdi->type == TYPE_2232H)?"BH":"D",
2944 (eeprom->group3_drive+1) *4,
2945 (eeprom->group3_schmitt)?" Schmitt Input":"",
2946 (eeprom->group3_slew)?" Slow Slew":"");
2947 }
2948 if (ftdi->type == TYPE_R)
2949 {
2950 char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
2951 "SLEEP","CLK48","CLK24","CLK12","CLK6",
2952 "IOMODE","BB_WR","BB_RD"
2953 };
2954 char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
2955
2956 if (eeprom->invert)
2957 {
2958 char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"};
2959 fprintf(stdout,"Inverted bits:");
2960 for (i=0; i<8; i++)
2961 if ((eeprom->invert & (1<<i)) == (1<<i))
2962 fprintf(stdout," %s",r_bits[i]);
2963 fprintf(stdout,"\n");
2964 }
2965 for (i=0; i<5; i++)
2966 {
2967 if (eeprom->cbus_function[i]<CBUS_BB)
2968 fprintf(stdout,"C%d Function: %s\n", i,
2969 cbus_mux[eeprom->cbus_function[i]]);
2970 else
2971 {
2972 if (i < 4)
2973 /* Running MPROG show that C0..3 have fixed function Synchronous
2974 Bit Bang mode */
2975 fprintf(stdout,"C%d BB Function: %s\n", i,
2976 cbus_BB[i]);
2977 else
2978 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
2979 }
2980 }
2981 }
2982 }
2983 return 0;
2984}
2985
2986/**
2987 Get a value from the decoded EEPROM structure
2988
2989 \param ftdi pointer to ftdi_context
2990 \param value_name Enum of the value to query
2991 \param value Pointer to store read value
2992
2993 \retval 0: all fine
2994 \retval -1: Value doesn't exist
2995*/
2996int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
2997{
2998 switch (value_name)
2999 {
3000 case VENDOR_ID:
3001 *value = ftdi->eeprom->vendor_id;
3002 break;
3003 case PRODUCT_ID:
3004 *value = ftdi->eeprom->product_id;
3005 break;
3006 case SELF_POWERED:
3007 *value = ftdi->eeprom->self_powered;
3008 break;
3009 case REMOTE_WAKEUP:
3010 *value = ftdi->eeprom->remote_wakeup;
3011 break;
3012 case IS_NOT_PNP:
3013 *value = ftdi->eeprom->is_not_pnp;
3014 break;
3015 case SUSPEND_DBUS7:
3016 *value = ftdi->eeprom->suspend_dbus7;
3017 break;
3018 case IN_IS_ISOCHRONOUS:
3019 *value = ftdi->eeprom->in_is_isochronous;
3020 break;
3021 case SUSPEND_PULL_DOWNS:
3022 *value = ftdi->eeprom->suspend_pull_downs;
3023 break;
3024 case USE_SERIAL:
3025 *value = ftdi->eeprom->use_serial;
3026 break;
3027 case USB_VERSION:
3028 *value = ftdi->eeprom->usb_version;
3029 break;
3030 case MAX_POWER:
3031 *value = ftdi->eeprom->max_power;
3032 break;
3033 case CHANNEL_A_TYPE:
3034 *value = ftdi->eeprom->channel_a_type;
3035 break;
3036 case CHANNEL_B_TYPE:
3037 *value = ftdi->eeprom->channel_b_type;
3038 break;
3039 case CHANNEL_A_DRIVER:
3040 *value = ftdi->eeprom->channel_a_driver;
3041 break;
3042 case CHANNEL_B_DRIVER:
3043 *value = ftdi->eeprom->channel_b_driver;
3044 break;
3045 case CBUS_FUNCTION_0:
3046 *value = ftdi->eeprom->cbus_function[0];
3047 break;
3048 case CBUS_FUNCTION_1:
3049 *value = ftdi->eeprom->cbus_function[1];
3050 break;
3051 case CBUS_FUNCTION_2:
3052 *value = ftdi->eeprom->cbus_function[2];
3053 break;
3054 case CBUS_FUNCTION_3:
3055 *value = ftdi->eeprom->cbus_function[3];
3056 break;
3057 case CBUS_FUNCTION_4:
3058 *value = ftdi->eeprom->cbus_function[4];
3059 break;
3060 case HIGH_CURRENT:
3061 *value = ftdi->eeprom->high_current;
3062 break;
3063 case HIGH_CURRENT_A:
3064 *value = ftdi->eeprom->high_current_a;
3065 break;
3066 case HIGH_CURRENT_B:
3067 *value = ftdi->eeprom->high_current_b;
3068 break;
3069 case INVERT:
3070 *value = ftdi->eeprom->invert;
3071 break;
3072 case GROUP0_DRIVE:
3073 *value = ftdi->eeprom->group0_drive;
3074 break;
3075 case GROUP0_SCHMITT:
3076 *value = ftdi->eeprom->group0_schmitt;
3077 break;
3078 case GROUP0_SLEW:
3079 *value = ftdi->eeprom->group0_slew;
3080 break;
3081 case GROUP1_DRIVE:
3082 *value = ftdi->eeprom->group1_drive;
3083 break;
3084 case GROUP1_SCHMITT:
3085 *value = ftdi->eeprom->group1_schmitt;
3086 break;
3087 case GROUP1_SLEW:
3088 *value = ftdi->eeprom->group1_slew;
3089 break;
3090 case GROUP2_DRIVE:
3091 *value = ftdi->eeprom->group2_drive;
3092 break;
3093 case GROUP2_SCHMITT:
3094 *value = ftdi->eeprom->group2_schmitt;
3095 break;
3096 case GROUP2_SLEW:
3097 *value = ftdi->eeprom->group2_slew;
3098 break;
3099 case GROUP3_DRIVE:
3100 *value = ftdi->eeprom->group3_drive;
3101 break;
3102 case GROUP3_SCHMITT:
3103 *value = ftdi->eeprom->group3_schmitt;
3104 break;
3105 case GROUP3_SLEW:
3106 *value = ftdi->eeprom->group3_slew;
3107 break;
3108 case CHIP_TYPE:
3109 *value = ftdi->eeprom->chip;
3110 break;
3111 case CHIP_SIZE:
3112 *value = ftdi->eeprom->size;
3113 break;
3114 default:
3115 ftdi_error_return(-1, "Request for unknown EEPROM value");
3116 }
3117 return 0;
3118}
3119
3120/**
3121 Set a value in the decoded EEPROM Structure
3122 No parameter checking is performed
3123
3124 \param ftdi pointer to ftdi_context
3125 \param value_name Enum of the value to set
3126 \param value to set
3127
3128 \retval 0: all fine
3129 \retval -1: Value doesn't exist
3130 \retval -2: Value not user settable
3131*/
3132int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
3133{
3134 switch (value_name)
3135 {
3136 case VENDOR_ID:
3137 ftdi->eeprom->vendor_id = value;
3138 break;
3139 case PRODUCT_ID:
3140 ftdi->eeprom->product_id = value;
3141 break;
3142 case SELF_POWERED:
3143 ftdi->eeprom->self_powered = value;
3144 break;
3145 case REMOTE_WAKEUP:
3146 ftdi->eeprom->remote_wakeup = value;
3147 break;
3148 case IS_NOT_PNP:
3149 ftdi->eeprom->is_not_pnp = value;
3150 break;
3151 case SUSPEND_DBUS7:
3152 ftdi->eeprom->suspend_dbus7 = value;
3153 break;
3154 case IN_IS_ISOCHRONOUS:
3155 ftdi->eeprom->in_is_isochronous = value;
3156 break;
3157 case SUSPEND_PULL_DOWNS:
3158 ftdi->eeprom->suspend_pull_downs = value;
3159 break;
3160 case USE_SERIAL:
3161 ftdi->eeprom->use_serial = value;
3162 break;
3163 case USB_VERSION:
3164 ftdi->eeprom->usb_version = value;
3165 break;
3166 case MAX_POWER:
3167 ftdi->eeprom->max_power = value;
3168 break;
3169 case CHANNEL_A_TYPE:
3170 ftdi->eeprom->channel_a_type = value;
3171 break;
3172 case CHANNEL_B_TYPE:
3173 ftdi->eeprom->channel_b_type = value;
3174 break;
3175 case CHANNEL_A_DRIVER:
3176 ftdi->eeprom->channel_a_driver = value;
3177 break;
3178 case CHANNEL_B_DRIVER:
3179 ftdi->eeprom->channel_b_driver = value;
3180 break;
3181 case CBUS_FUNCTION_0:
3182 ftdi->eeprom->cbus_function[0] = value;
3183 break;
3184 case CBUS_FUNCTION_1:
3185 ftdi->eeprom->cbus_function[1] = value;
3186 break;
3187 case CBUS_FUNCTION_2:
3188 ftdi->eeprom->cbus_function[2] = value;
3189 break;
3190 case CBUS_FUNCTION_3:
3191 ftdi->eeprom->cbus_function[3] = value;
3192 break;
3193 case CBUS_FUNCTION_4:
3194 ftdi->eeprom->cbus_function[4] = value;
3195 break;
3196 case HIGH_CURRENT:
3197 ftdi->eeprom->high_current = value;
3198 break;
3199 case HIGH_CURRENT_A:
3200 ftdi->eeprom->high_current_a = value;
3201 break;
3202 case HIGH_CURRENT_B:
3203 ftdi->eeprom->high_current_b = value;
3204 break;
3205 case INVERT:
3206 ftdi->eeprom->invert = value;
3207 break;
3208 case GROUP0_DRIVE:
3209 ftdi->eeprom->group0_drive = value;
3210 break;
3211 case GROUP0_SCHMITT:
3212 ftdi->eeprom->group0_schmitt = value;
3213 break;
3214 case GROUP0_SLEW:
3215 ftdi->eeprom->group0_slew = value;
3216 break;
3217 case GROUP1_DRIVE:
3218 ftdi->eeprom->group1_drive = value;
3219 break;
3220 case GROUP1_SCHMITT:
3221 ftdi->eeprom->group1_schmitt = value;
3222 break;
3223 case GROUP1_SLEW:
3224 ftdi->eeprom->group1_slew = value;
3225 break;
3226 case GROUP2_DRIVE:
3227 ftdi->eeprom->group2_drive = value;
3228 break;
3229 case GROUP2_SCHMITT:
3230 ftdi->eeprom->group2_schmitt = value;
3231 break;
3232 case GROUP2_SLEW:
3233 ftdi->eeprom->group2_slew = value;
3234 break;
3235 case GROUP3_DRIVE:
3236 ftdi->eeprom->group3_drive = value;
3237 break;
3238 case GROUP3_SCHMITT:
3239 ftdi->eeprom->group3_schmitt = value;
3240 break;
3241 case GROUP3_SLEW:
3242 ftdi->eeprom->group3_slew = value;
3243 break;
3244 case CHIP_TYPE:
3245 ftdi->eeprom->chip = value;
3246 break;
3247 case CHIP_SIZE:
3248 ftdi_error_return(-2, "EEPROM Value can't be changed");
3249 default :
3250 ftdi_error_return(-1, "Request to unknown EEPROM value");
3251 }
3252 return 0;
3253}
3254
3255/** Get the read-only buffer to the binary EEPROM content
3256
3257 \param ftdi pointer to ftdi_context
3258 \param buf buffer to receive EEPROM content
3259 \param size Size of receiving buffer
3260
3261 \retval 0: All fine
3262 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
3263 \retval -2: Not enough room to store eeprom
3264*/
3265int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
3266{
3267 if (!ftdi || !(ftdi->eeprom))
3268 ftdi_error_return(-1, "No appropriate structure");
3269
3270 if (!buf || size < ftdi->eeprom->size)
3271 ftdi_error_return(-1, "Not enough room to store eeprom");
3272
3273 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
3274 if (size > FTDI_MAX_EEPROM_SIZE)
3275 size = FTDI_MAX_EEPROM_SIZE;
3276
3277 memcpy(buf, ftdi->eeprom->buf, size);
3278
3279 return 0;
3280}
3281
3282/**
3283 Read eeprom location
3284
3285 \param ftdi pointer to ftdi_context
3286 \param eeprom_addr Address of eeprom location to be read
3287 \param eeprom_val Pointer to store read eeprom location
3288
3289 \retval 0: all fine
3290 \retval -1: read failed
3291 \retval -2: USB device unavailable
3292*/
3293int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
3294{
3295 if (ftdi == NULL || ftdi->usb_dev == NULL)
3296 ftdi_error_return(-2, "USB device unavailable");
3297
3298 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2)
3299 ftdi_error_return(-1, "reading eeprom failed");
3300
3301 return 0;
3302}
3303
3304/**
3305 Read eeprom
3306
3307 \param ftdi pointer to ftdi_context
3308
3309 \retval 0: all fine
3310 \retval -1: read failed
3311 \retval -2: USB device unavailable
3312*/
3313int ftdi_read_eeprom(struct ftdi_context *ftdi)
3314{
3315 int i;
3316 unsigned char *buf;
3317
3318 if (ftdi == NULL || ftdi->usb_dev == NULL)
3319 ftdi_error_return(-2, "USB device unavailable");
3320 buf = ftdi->eeprom->buf;
3321
3322 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
3323 {
3324 if (libusb_control_transfer(
3325 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
3326 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
3327 ftdi_error_return(-1, "reading eeprom failed");
3328 }
3329
3330 if (ftdi->type == TYPE_R)
3331 ftdi->eeprom->size = 0x80;
3332 /* Guesses size of eeprom by comparing halves
3333 - will not work with blank eeprom */
3334 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
3335 ftdi->eeprom->size = -1;
3336 else if (memcmp(buf,&buf[0x80],0x80) == 0)
3337 ftdi->eeprom->size = 0x80;
3338 else if (memcmp(buf,&buf[0x40],0x40) == 0)
3339 ftdi->eeprom->size = 0x40;
3340 else
3341 ftdi->eeprom->size = 0x100;
3342 return 0;
3343}
3344
3345/*
3346 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
3347 Function is only used internally
3348 \internal
3349*/
3350static unsigned char ftdi_read_chipid_shift(unsigned char value)
3351{
3352 return ((value & 1) << 1) |
3353 ((value & 2) << 5) |
3354 ((value & 4) >> 2) |
3355 ((value & 8) << 4) |
3356 ((value & 16) >> 1) |
3357 ((value & 32) >> 1) |
3358 ((value & 64) >> 4) |
3359 ((value & 128) >> 2);
3360}
3361
3362/**
3363 Read the FTDIChip-ID from R-type devices
3364
3365 \param ftdi pointer to ftdi_context
3366 \param chipid Pointer to store FTDIChip-ID
3367
3368 \retval 0: all fine
3369 \retval -1: read failed
3370 \retval -2: USB device unavailable
3371*/
3372int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
3373{
3374 unsigned int a = 0, b = 0;
3375
3376 if (ftdi == NULL || ftdi->usb_dev == NULL)
3377 ftdi_error_return(-2, "USB device unavailable");
3378
3379 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
3380 {
3381 a = a << 8 | a >> 8;
3382 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
3383 {
3384 b = b << 8 | b >> 8;
3385 a = (a << 16) | (b & 0xFFFF);
3386 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
3387 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
3388 *chipid = a ^ 0xa5f0f7d1;
3389 return 0;
3390 }
3391 }
3392
3393 ftdi_error_return(-1, "read of FTDIChip-ID failed");
3394}
3395
3396/**
3397 Write eeprom location
3398
3399 \param ftdi pointer to ftdi_context
3400 \param eeprom_addr Address of eeprom location to be written
3401 \param eeprom_val Value to be written
3402
3403 \retval 0: all fine
3404 \retval -1: write failed
3405 \retval -2: USB device unavailable
3406 \retval -3: Invalid access to checksum protected area below 0x80
3407 \retval -4: Device can't access unprotected area
3408 \retval -5: Reading chip type failed
3409*/
3410int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
3411 unsigned short eeprom_val)
3412{
3413 int chip_type_location;
3414 unsigned short chip_type;
3415
3416 if (ftdi == NULL || ftdi->usb_dev == NULL)
3417 ftdi_error_return(-2, "USB device unavailable");
3418
3419 if (eeprom_addr <0x80)
3420 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
3421
3422
3423 switch (ftdi->type)
3424 {
3425 case TYPE_BM:
3426 case TYPE_2232C:
3427 chip_type_location = 0x14;
3428 break;
3429 case TYPE_2232H:
3430 case TYPE_4232H:
3431 chip_type_location = 0x18;
3432 break;
3433 default:
3434 ftdi_error_return(-4, "Device can't access unprotected area");
3435 }
3436
3437 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
3438 ftdi_error_return(-5, "Reading failed failed");
3439 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
3440 if ((chip_type & 0xff) != 0x66)
3441 {
3442 ftdi_error_return(-6, "EEPROM is not of 93x66");
3443 }
3444
3445 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3446 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
3447 NULL, 0, ftdi->usb_write_timeout) != 0)
3448 ftdi_error_return(-1, "unable to write eeprom");
3449
3450 return 0;
3451}
3452
3453/**
3454 Write eeprom
3455
3456 \param ftdi pointer to ftdi_context
3457
3458 \retval 0: all fine
3459 \retval -1: read failed
3460 \retval -2: USB device unavailable
3461*/
3462int ftdi_write_eeprom(struct ftdi_context *ftdi)
3463{
3464 unsigned short usb_val, status;
3465 int i, ret;
3466 unsigned char *eeprom;
3467
3468 if (ftdi == NULL || ftdi->usb_dev == NULL)
3469 ftdi_error_return(-2, "USB device unavailable");
3470 eeprom = ftdi->eeprom->buf;
3471
3472 /* These commands were traced while running MProg */
3473 if ((ret = ftdi_usb_reset(ftdi)) != 0)
3474 return ret;
3475 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
3476 return ret;
3477 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
3478 return ret;
3479
3480 for (i = 0; i < ftdi->eeprom->size/2; i++)
3481 {
3482 usb_val = eeprom[i*2];
3483 usb_val += eeprom[(i*2)+1] << 8;
3484 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3485 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
3486 NULL, 0, ftdi->usb_write_timeout) < 0)
3487 ftdi_error_return(-1, "unable to write eeprom");
3488 }
3489
3490 return 0;
3491}
3492
3493/**
3494 Erase eeprom
3495
3496 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
3497
3498 \param ftdi pointer to ftdi_context
3499
3500 \retval 0: all fine
3501 \retval -1: erase failed
3502 \retval -2: USB device unavailable
3503 \retval -3: Writing magic failed
3504 \retval -4: Read EEPROM failed
3505 \retval -5: Unexpected EEPROM value
3506*/
3507#define MAGIC 0x55aa
3508int ftdi_erase_eeprom(struct ftdi_context *ftdi)
3509{
3510 unsigned short eeprom_value;
3511 if (ftdi == NULL || ftdi->usb_dev == NULL)
3512 ftdi_error_return(-2, "USB device unavailable");
3513
3514 if (ftdi->type == TYPE_R)
3515 {
3516 ftdi->eeprom->chip = 0;
3517 return 0;
3518 }
3519
3520 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3521 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3522 ftdi_error_return(-1, "unable to erase eeprom");
3523
3524
3525 /* detect chip type by writing 0x55AA as magic at word position 0xc0
3526 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
3527 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
3528 Chip is 93x66 if magic is only read at word position 0xc0*/
3529 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
3530 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
3531 NULL, 0, ftdi->usb_write_timeout) != 0)
3532 ftdi_error_return(-3, "Writing magic failed");
3533 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
3534 ftdi_error_return(-4, "Reading failed failed");
3535 if (eeprom_value == MAGIC)
3536 {
3537 ftdi->eeprom->chip = 0x46;
3538 }
3539 else
3540 {
3541 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
3542 ftdi_error_return(-4, "Reading failed failed");
3543 if (eeprom_value == MAGIC)
3544 ftdi->eeprom->chip = 0x56;
3545 else
3546 {
3547 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
3548 ftdi_error_return(-4, "Reading failed failed");
3549 if (eeprom_value == MAGIC)
3550 ftdi->eeprom->chip = 0x66;
3551 else
3552 {
3553 ftdi->eeprom->chip = -1;
3554 }
3555 }
3556 }
3557 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
3558 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
3559 ftdi_error_return(-1, "unable to erase eeprom");
3560 return 0;
3561}
3562
3563/**
3564 Get string representation for last error code
3565
3566 \param ftdi pointer to ftdi_context
3567
3568 \retval Pointer to error string
3569*/
3570char *ftdi_get_error_string (struct ftdi_context *ftdi)
3571{
3572 if (ftdi == NULL)
3573 return "";
3574
3575 return ftdi->error_str;
3576}
3577
3578/* @} end of doxygen libftdi group */