libftdi: (tomj) applied status byte filtering patch for large readbuffers
[libftdi] / ftdi / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003 by Intra2net AG
6 email : opensource@intra2net.com
7 ***************************************************************************/
8
9/***************************************************************************
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU Lesser General Public License *
13 * version 2.1 as published by the Free Software Foundation; *
14 * *
15 ***************************************************************************/
16
17#include <usb.h>
18#include <string.h>
19
20#include "ftdi.h"
21
22/* ftdi_init return codes:
23 0: all fine
24 -1: couldn't allocate read buffer
25*/
26int ftdi_init(struct ftdi_context *ftdi)
27{
28 ftdi->usb_dev = NULL;
29 ftdi->usb_read_timeout = 5000;
30 ftdi->usb_write_timeout = 5000;
31
32 ftdi->type = TYPE_BM; /* chip type */
33 ftdi->baudrate = -1;
34 ftdi->bitbang_enabled = 0;
35
36 ftdi->readbuffer = NULL;
37 ftdi->readbuffer_offset = 0;
38 ftdi->readbuffer_remaining = 0;
39 ftdi->writebuffer_chunksize = 4096;
40
41 ftdi->interface = 0;
42 ftdi->index = 0;
43 ftdi->in_ep = 0x02;
44 ftdi->out_ep = 0x81;
45 ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */
46
47 ftdi->error_str = NULL;
48
49 /* All fine. Now allocate the readbuffer */
50 return ftdi_read_data_set_chunksize(ftdi, 4096);
51}
52
53
54void ftdi_deinit(struct ftdi_context *ftdi)
55{
56 if (ftdi->readbuffer != NULL) {
57 free(ftdi->readbuffer);
58 ftdi->readbuffer = NULL;
59 }
60}
61
62
63void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb)
64{
65 ftdi->usb_dev = usb;
66}
67
68
69/* ftdi_usb_open return codes:
70 0: all fine
71 -1: usb_find_busses() failed
72 -2: usb_find_devices() failed
73 -3: usb device not found
74 -4: unable to open device
75 -5: unable to claim device
76 -6: reset failed
77 -7: set baudrate failed
78 -8: get product description failed
79 -9: get serial number failed
80 -10: unable to close device
81*/
82int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
83{
84 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
85}
86
87int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
88 const char* description, const char* serial)
89{
90 struct usb_bus *bus;
91 struct usb_device *dev;
92
93 usb_init();
94
95 if (usb_find_busses() < 0) {
96 ftdi->error_str = "usb_find_busses() failed";
97 return -1;
98 }
99
100 if (usb_find_devices() < 0) {
101 ftdi->error_str = "usb_find_devices() failed";
102 return -2;
103 }
104
105 for (bus = usb_busses; bus; bus = bus->next) {
106 for (dev = bus->devices; dev; dev = dev->next) {
107 if (dev->descriptor.idVendor == vendor
108 && dev->descriptor.idProduct == product) {
109 if (!(ftdi->usb_dev = usb_open(dev))) {
110 ftdi->error_str = "usb_open() failed";
111 return -4;
112 }
113
114 char string[256];
115 if (description != NULL) {
116 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) {
117 ftdi->error_str = "unable to fetch product description\n";
118 if (usb_close (ftdi->usb_dev) != 0)
119 return -10;
120 return -8;
121 }
122 if (strncmp(string, description, sizeof(string)) != 0) {
123 ftdi->error_str = "product description not matching\n";
124 if (usb_close (ftdi->usb_dev) != 0)
125 return -10;
126 continue;
127 }
128 }
129 if (serial != NULL) {
130 if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) {
131 ftdi->error_str = "unable to fetch serial number\n";
132 if (usb_close (ftdi->usb_dev) != 0)
133 return -10;
134 return -9;
135 }
136 if (strncmp(string, serial, sizeof(string)) != 0) {
137 ftdi->error_str = "serial number not matching\n";
138 if (usb_close (ftdi->usb_dev) != 0)
139 return -10;
140 continue;
141 }
142 }
143
144 if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) {
145 ftdi->error_str = "unable to claim usb device. Make sure ftdi_sio is unloaded!";
146 if (usb_close (ftdi->usb_dev) != 0)
147 return -10;
148 return -5;
149 }
150
151 if (ftdi_usb_reset (ftdi) != 0) {
152 if (usb_close (ftdi->usb_dev) != 0)
153 return -10;
154 return -6;
155 }
156
157 if (ftdi_set_baudrate (ftdi, 9600) != 0) {
158 if (usb_close (ftdi->usb_dev) != 0)
159 return -10;
160 return -7;
161 }
162
163 // Try to guess chip type
164 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
165 if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200
166 && dev->descriptor.iSerialNumber == 0))
167 ftdi->type = TYPE_BM;
168 else if (dev->descriptor.bcdDevice == 0x200)
169 ftdi->type = TYPE_AM;
170 else if (dev->descriptor.bcdDevice == 0x500)
171 ftdi->type = TYPE_2232C;
172
173 return 0;
174 }
175 }
176 }
177
178 // device not found
179 return -3;
180}
181
182
183int ftdi_usb_reset(struct ftdi_context *ftdi)
184{
185 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) {
186 ftdi->error_str = "FTDI reset failed";
187 return -1;
188 }
189 // Invalidate data in the readbuffer
190 ftdi->readbuffer_offset = 0;
191 ftdi->readbuffer_remaining = 0;
192
193 return 0;
194}
195
196int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
197{
198 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) {
199 ftdi->error_str = "FTDI purge of RX buffer failed";
200 return -1;
201 }
202 // Invalidate data in the readbuffer
203 ftdi->readbuffer_offset = 0;
204 ftdi->readbuffer_remaining = 0;
205
206 if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) {
207 ftdi->error_str = "FTDI purge of TX buffer failed";
208 return -1;
209 }
210
211
212 return 0;
213}
214
215/* ftdi_usb_close return codes
216 0: all fine
217 -1: usb_release failed
218 -2: usb_close failed
219*/
220int ftdi_usb_close(struct ftdi_context *ftdi)
221{
222 int rtn = 0;
223
224 if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0)
225 rtn = -1;
226
227 if (usb_close (ftdi->usb_dev) != 0)
228 rtn = -2;
229
230 return rtn;
231}
232
233
234/*
235 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
236 Function is only used internally
237*/
238static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
239 unsigned short *value, unsigned short *index)
240{
241 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
242 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
243 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
244 int divisor, best_divisor, best_baud, best_baud_diff;
245 unsigned long encoded_divisor;
246 int i;
247
248 if (baudrate <= 0) {
249 // Return error
250 return -1;
251 }
252
253 divisor = 24000000 / baudrate;
254
255 if (ftdi->type == TYPE_AM) {
256 // Round down to supported fraction (AM only)
257 divisor -= am_adjust_dn[divisor & 7];
258 }
259
260 // Try this divisor and the one above it (because division rounds down)
261 best_divisor = 0;
262 best_baud = 0;
263 best_baud_diff = 0;
264 for (i = 0; i < 2; i++) {
265 int try_divisor = divisor + i;
266 int baud_estimate;
267 int baud_diff;
268
269 // Round up to supported divisor value
270 if (try_divisor < 8) {
271 // Round up to minimum supported divisor
272 try_divisor = 8;
273 } else if (ftdi->type != TYPE_AM && try_divisor < 12) {
274 // BM doesn't support divisors 9 through 11 inclusive
275 try_divisor = 12;
276 } else if (divisor < 16) {
277 // AM doesn't support divisors 9 through 15 inclusive
278 try_divisor = 16;
279 } else {
280 if (ftdi->type == TYPE_AM) {
281 // Round up to supported fraction (AM only)
282 try_divisor += am_adjust_up[try_divisor & 7];
283 if (try_divisor > 0x1FFF8) {
284 // Round down to maximum supported divisor value (for AM)
285 try_divisor = 0x1FFF8;
286 }
287 } else {
288 if (try_divisor > 0x1FFFF) {
289 // Round down to maximum supported divisor value (for BM)
290 try_divisor = 0x1FFFF;
291 }
292 }
293 }
294 // Get estimated baud rate (to nearest integer)
295 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
296 // Get absolute difference from requested baud rate
297 if (baud_estimate < baudrate) {
298 baud_diff = baudrate - baud_estimate;
299 } else {
300 baud_diff = baud_estimate - baudrate;
301 }
302 if (i == 0 || baud_diff < best_baud_diff) {
303 // Closest to requested baud rate so far
304 best_divisor = try_divisor;
305 best_baud = baud_estimate;
306 best_baud_diff = baud_diff;
307 if (baud_diff == 0) {
308 // Spot on! No point trying
309 break;
310 }
311 }
312 }
313 // Encode the best divisor value
314 encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
315 // Deal with special cases for encoded value
316 if (encoded_divisor == 1) {
317 encoded_divisor = 0; // 3000000 baud
318 } else if (encoded_divisor == 0x4001) {
319 encoded_divisor = 1; // 2000000 baud (BM only)
320 }
321 // Split into "value" and "index" values
322 *value = (unsigned short)(encoded_divisor & 0xFFFF);
323 if(ftdi->type == TYPE_2232C) {
324 *index = (unsigned short)(encoded_divisor >> 8);
325 *index &= 0xFF00;
326 *index |= ftdi->interface;
327 }
328 else
329 *index = (unsigned short)(encoded_divisor >> 16);
330
331 // Return the nearest baud rate
332 return best_baud;
333}
334
335/*
336 ftdi_set_baudrate return codes:
337 0: all fine
338 -1: invalid baudrate
339 -2: setting baudrate failed
340*/
341int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
342{
343 unsigned short value, index;
344 int actual_baudrate;
345
346 if (ftdi->bitbang_enabled) {
347 baudrate = baudrate*4;
348 }
349
350 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
351 if (actual_baudrate <= 0) {
352 ftdi->error_str = "Silly baudrate <= 0.";
353 return -1;
354 }
355
356 // Check within tolerance (about 5%)
357 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
358 || ((actual_baudrate < baudrate)
359 ? (actual_baudrate * 21 < baudrate * 20)
360 : (baudrate * 21 < actual_baudrate * 20))) {
361 ftdi->error_str = "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4";
362 return -1;
363 }
364
365 if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0) {
366 ftdi->error_str = "Setting new baudrate failed";
367 return -2;
368 }
369
370 ftdi->baudrate = baudrate;
371 return 0;
372}
373
374
375int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
376{
377 int ret;
378 int offset = 0;
379 int total_written = 0;
380 while (offset < size) {
381 int write_size = ftdi->writebuffer_chunksize;
382
383 if (offset+write_size > size)
384 write_size = size-offset;
385
386 ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout);
387 if (ret < 0) {
388 if (ret == -1)
389 ftdi->error_str = "bulk write failed";
390 else
391 ftdi->error_str = "usb failed";
392 return ret;
393 }
394 total_written += ret;
395
396 offset += write_size;
397 }
398
399 return total_written;
400}
401
402
403int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
404{
405 ftdi->writebuffer_chunksize = chunksize;
406 return 0;
407}
408
409
410int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
411{
412 *chunksize = ftdi->writebuffer_chunksize;
413 return 0;
414}
415
416
417int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
418{
419 int offset = 0, ret = 1, i, num_of_chunks, chunk_remains;
420
421 // everything we want is still in the readbuffer?
422 if (size <= ftdi->readbuffer_remaining) {
423 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
424
425 // Fix offsets
426 ftdi->readbuffer_remaining -= size;
427 ftdi->readbuffer_offset += size;
428
429 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
430
431 return size;
432 }
433 // something still in the readbuffer, but not enough to satisfy 'size'?
434 if (ftdi->readbuffer_remaining != 0) {
435 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
436
437 // Fix offset
438 offset += ftdi->readbuffer_remaining;
439 }
440 // do the actual USB read
441 while (offset < size && ret > 0) {
442 ftdi->readbuffer_remaining = 0;
443 ftdi->readbuffer_offset = 0;
444 /* returns how much received */
445 ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout);
446
447 if (ret < 0) {
448 if (ret == -1)
449 ftdi->error_str = "bulk read failed";
450 else
451 ftdi->error_str = "usb failed";
452 return ret;
453 }
454
455 if (ret > 2) {
456 // skip FTDI status bytes.
457 // Maybe stored in the future to enable modem use
458 num_of_chunks = ret / 64;
459 chunk_remains = ret % 64;
460 //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
461
462 ftdi->readbuffer_offset += 2;
463 ret -= 2;
464
465 if (ret > 64) {
466 for (i = 1; i < num_of_chunks; i++)
467 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
468 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
469 62);
470 if (chunk_remains > 2) {
471 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i,
472 ftdi->readbuffer+ftdi->readbuffer_offset+64*i,
473 chunk_remains-2);
474 ret -= 2*num_of_chunks;
475 } else
476 ret -= 2*(num_of_chunks-1)+chunk_remains;
477 }
478 } else if (ret <= 2) {
479 // no more data to read?
480 return offset;
481 }
482 if (ret > 0) {
483 // data still fits in buf?
484 if (offset+ret <= size) {
485 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret);
486 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
487 offset += ret;
488
489 /* Did we read exactly the right amount of bytes? */
490 if (offset == size)
491 return offset;
492 } else {
493 // only copy part of the data or size <= readbuffer_chunksize
494 int part_size = size-offset;
495 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
496
497 ftdi->readbuffer_offset += part_size;
498 ftdi->readbuffer_remaining = ret-part_size;
499 offset += part_size;
500
501 /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n",
502 part_size, size, offset, ret, ftdi->readbuffer_remaining); */
503
504 return offset;
505 }
506 }
507 }
508 // never reached
509 return -127;
510}
511
512
513int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
514{
515 unsigned char *new_buf;
516
517 // Invalidate all remaining data
518 ftdi->readbuffer_offset = 0;
519 ftdi->readbuffer_remaining = 0;
520
521 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL) {
522 ftdi->error_str = "out of memory for readbuffer";
523 return -1;
524 }
525
526 ftdi->readbuffer = new_buf;
527 ftdi->readbuffer_chunksize = chunksize;
528
529 return 0;
530}
531
532
533int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
534{
535 *chunksize = ftdi->readbuffer_chunksize;
536 return 0;
537}
538
539
540
541int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask)
542{
543 unsigned short usb_val;
544
545 usb_val = bitmask; // low byte: bitmask
546 /* FT2232C: Set bitbang_mode to 2 to enable SPI */
547 usb_val |= (ftdi->bitbang_mode << 8);
548
549 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) {
550 ftdi->error_str = "Unable to enter bitbang mode. Perhaps not a BM type chip?";
551 return -1;
552 }
553 ftdi->bitbang_enabled = 1;
554 return 0;
555}
556
557
558int ftdi_disable_bitbang(struct ftdi_context *ftdi)
559{
560 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) {
561 ftdi->error_str = "Unable to leave bitbang mode. Perhaps not a BM type chip?";
562 return -1;
563 }
564
565 ftdi->bitbang_enabled = 0;
566 return 0;
567}
568
569
570int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
571{
572 unsigned short usb_val;
573 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1) {
574 ftdi->error_str = "Read pins failed";
575 return -1;
576 }
577
578 *pins = (unsigned char)usb_val;
579 return 0;
580}
581
582
583int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
584{
585 unsigned short usb_val;
586
587 if (latency < 1) {
588 ftdi->error_str = "Latency out of range. Only valid for 1-255";
589 return -1;
590 }
591
592 usb_val = latency;
593 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) {
594 ftdi->error_str = "Unable to set latency timer";
595 return -2;
596 }
597 return 0;
598}
599
600
601int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
602{
603 unsigned short usb_val;
604 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1) {
605 ftdi->error_str = "Reading latency timer failed";
606 return -1;
607 }
608
609 *latency = (unsigned char)usb_val;
610 return 0;
611}
612
613
614void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom)
615{
616 eeprom->vendor_id = 0x0403;
617 eeprom->product_id = 0x6001;
618
619 eeprom->self_powered = 1;
620 eeprom->remote_wakeup = 1;
621 eeprom->BM_type_chip = 1;
622
623 eeprom->in_is_isochronous = 0;
624 eeprom->out_is_isochronous = 0;
625 eeprom->suspend_pull_downs = 0;
626
627 eeprom->use_serial = 0;
628 eeprom->change_usb_version = 0;
629 eeprom->usb_version = 0x0200;
630 eeprom->max_power = 0;
631
632 eeprom->manufacturer = NULL;
633 eeprom->product = NULL;
634 eeprom->serial = NULL;
635}
636
637
638/*
639 ftdi_eeprom_build return codes:
640 positive value: used eeprom size
641 -1: eeprom size (128 bytes) exceeded by custom strings
642*/
643int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output)
644{
645 unsigned char i, j;
646 unsigned short checksum, value;
647 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
648 int size_check;
649
650 if (eeprom->manufacturer != NULL)
651 manufacturer_size = strlen(eeprom->manufacturer);
652 if (eeprom->product != NULL)
653 product_size = strlen(eeprom->product);
654 if (eeprom->serial != NULL)
655 serial_size = strlen(eeprom->serial);
656
657 size_check = 128; // eeprom is 128 bytes
658 size_check -= 28; // 28 are always in use (fixed)
659 size_check -= manufacturer_size*2;
660 size_check -= product_size*2;
661 size_check -= serial_size*2;
662
663 // eeprom size exceeded?
664 if (size_check < 0)
665 return (-1);
666
667 // empty eeprom
668 memset (output, 0, 128);
669
670 // Addr 00: Stay 00 00
671 // Addr 02: Vendor ID
672 output[0x02] = eeprom->vendor_id;
673 output[0x03] = eeprom->vendor_id >> 8;
674
675 // Addr 04: Product ID
676 output[0x04] = eeprom->product_id;
677 output[0x05] = eeprom->product_id >> 8;
678
679 // Addr 06: Device release number (0400h for BM features)
680 output[0x06] = 0x00;
681
682 if (eeprom->BM_type_chip == 1)
683 output[0x07] = 0x04;
684 else
685 output[0x07] = 0x02;
686
687 // Addr 08: Config descriptor
688 // Bit 1: remote wakeup if 1
689 // Bit 0: self powered if 1
690 //
691 j = 0;
692 if (eeprom->self_powered == 1)
693 j = j | 1;
694 if (eeprom->remote_wakeup == 1)
695 j = j | 2;
696 output[0x08] = j;
697
698 // Addr 09: Max power consumption: max power = value * 2 mA
699 output[0x09] = eeprom->max_power;
700 ;
701
702 // Addr 0A: Chip configuration
703 // Bit 7: 0 - reserved
704 // Bit 6: 0 - reserved
705 // Bit 5: 0 - reserved
706 // Bit 4: 1 - Change USB version
707 // Bit 3: 1 - Use the serial number string
708 // Bit 2: 1 - Enable suspend pull downs for lower power
709 // Bit 1: 1 - Out EndPoint is Isochronous
710 // Bit 0: 1 - In EndPoint is Isochronous
711 //
712 j = 0;
713 if (eeprom->in_is_isochronous == 1)
714 j = j | 1;
715 if (eeprom->out_is_isochronous == 1)
716 j = j | 2;
717 if (eeprom->suspend_pull_downs == 1)
718 j = j | 4;
719 if (eeprom->use_serial == 1)
720 j = j | 8;
721 if (eeprom->change_usb_version == 1)
722 j = j | 16;
723 output[0x0A] = j;
724
725 // Addr 0B: reserved
726 output[0x0B] = 0x00;
727
728 // Addr 0C: USB version low byte when 0x0A bit 4 is set
729 // Addr 0D: USB version high byte when 0x0A bit 4 is set
730 if (eeprom->change_usb_version == 1) {
731 output[0x0C] = eeprom->usb_version;
732 output[0x0D] = eeprom->usb_version >> 8;
733 }
734
735
736 // Addr 0E: Offset of the manufacturer string + 0x80
737 output[0x0E] = 0x14 + 0x80;
738
739 // Addr 0F: Length of manufacturer string
740 output[0x0F] = manufacturer_size*2 + 2;
741
742 // Addr 10: Offset of the product string + 0x80, calculated later
743 // Addr 11: Length of product string
744 output[0x11] = product_size*2 + 2;
745
746 // Addr 12: Offset of the serial string + 0x80, calculated later
747 // Addr 13: Length of serial string
748 output[0x13] = serial_size*2 + 2;
749
750 // Dynamic content
751 output[0x14] = manufacturer_size*2 + 2;
752 output[0x15] = 0x03; // type: string
753
754 i = 0x16, j = 0;
755
756 // Output manufacturer
757 for (j = 0; j < manufacturer_size; j++) {
758 output[i] = eeprom->manufacturer[j], i++;
759 output[i] = 0x00, i++;
760 }
761
762 // Output product name
763 output[0x10] = i + 0x80; // calculate offset
764 output[i] = product_size*2 + 2, i++;
765 output[i] = 0x03, i++;
766 for (j = 0; j < product_size; j++) {
767 output[i] = eeprom->product[j], i++;
768 output[i] = 0x00, i++;
769 }
770
771 // Output serial
772 output[0x12] = i + 0x80; // calculate offset
773 output[i] = serial_size*2 + 2, i++;
774 output[i] = 0x03, i++;
775 for (j = 0; j < serial_size; j++) {
776 output[i] = eeprom->serial[j], i++;
777 output[i] = 0x00, i++;
778 }
779
780 // calculate checksum
781 checksum = 0xAAAA;
782
783 for (i = 0; i < 63; i++) {
784 value = output[i*2];
785 value += output[(i*2)+1] << 8;
786
787 checksum = value^checksum;
788 checksum = (checksum << 1) | (checksum >> 15);
789 }
790
791 output[0x7E] = checksum;
792 output[0x7F] = checksum >> 8;
793
794 return size_check;
795}
796
797
798int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
799{
800 int i;
801
802 for (i = 0; i < 64; i++) {
803 if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2) {
804 ftdi->error_str = "Reading eeprom failed";
805 return -1;
806 }
807 }
808
809 return 0;
810}
811
812
813int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom)
814{
815 unsigned short usb_val;
816 int i;
817
818 for (i = 0; i < 64; i++) {
819 usb_val = eeprom[i*2];
820 usb_val += eeprom[(i*2)+1] << 8;
821 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0) {
822 ftdi->error_str = "Unable to write eeprom";
823 return -1;
824 }
825 }
826
827 return 0;
828}
829
830
831int ftdi_erase_eeprom(struct ftdi_context *ftdi)
832{
833 if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0) {
834 ftdi->error_str = "Unable to erase eeprom";
835 return -1;
836 }
837
838 return 0;
839}