python/CMakeLists.txt: rework Python development files detection
[libftdi] / src / ftdi.c
... / ...
CommitLineData
1/***************************************************************************
2 ftdi.c - description
3 -------------------
4 begin : Fri Apr 4 2003
5 copyright : (C) 2003-2020 by Intra2net AG and the libftdi developers
6 email : opensource@intra2net.com
7 SPDX-License-Identifier: LGPL-2.1-only
8 ***************************************************************************/
9
10/***************************************************************************
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU Lesser General Public License *
14 * version 2.1 as published by the Free Software Foundation; *
15 * *
16 ***************************************************************************/
17
18/**
19 \mainpage libftdi API documentation
20
21 Library to talk to FTDI chips. You find the latest versions of libftdi at
22 https://www.intra2net.com/en/developer/libftdi/
23
24 The library is easy to use. Have a look at this short example:
25 \include simple.c
26
27 More examples can be found in the "examples" directory.
28*/
29/** \addtogroup libftdi */
30/* @{ */
31
32#include <libusb.h>
33#include <string.h>
34#include <errno.h>
35#include <stdio.h>
36#include <stdlib.h>
37
38#include "ftdi_i.h"
39/* Prevent deprecated messages when building library */
40#define _FTDI_DISABLE_DEPRECATED
41#include "ftdi.h"
42#include "ftdi_version_i.h"
43
44#define ftdi_error_return(code, str) do { \
45 if ( ftdi ) \
46 ftdi->error_str = str; \
47 else \
48 fprintf(stderr, str); \
49 return code; \
50 } while(0);
51
52#define ftdi_error_return_free_device_list(code, str, devs) do { \
53 libusb_free_device_list(devs,1); \
54 ftdi->error_str = str; \
55 return code; \
56 } while(0);
57
58
59/**
60 Internal function to close usb device pointer.
61 Sets ftdi->usb_dev to NULL.
62 \internal
63
64 \param ftdi pointer to ftdi_context
65
66 \retval none
67*/
68static void ftdi_usb_close_internal (struct ftdi_context *ftdi)
69{
70 if (ftdi && ftdi->usb_dev)
71 {
72 libusb_close (ftdi->usb_dev);
73 ftdi->usb_dev = NULL;
74 if(ftdi->eeprom)
75 ftdi->eeprom->initialized_for_connected_device = 0;
76 }
77}
78
79/**
80 Initializes a ftdi_context.
81
82 \param ftdi pointer to ftdi_context
83
84 \retval 0: all fine
85 \retval -1: couldn't allocate read buffer
86 \retval -2: couldn't allocate struct buffer
87 \retval -3: libusb_init() failed
88
89 \remark This should be called before all functions
90*/
91int ftdi_init(struct ftdi_context *ftdi)
92{
93 struct ftdi_eeprom* eeprom;
94 ftdi->usb_ctx = NULL;
95 ftdi->usb_dev = NULL;
96 ftdi->usb_read_timeout = 5000;
97 ftdi->usb_write_timeout = 5000;
98
99 ftdi->type = TYPE_BM; /* chip type */
100 ftdi->baudrate = -1;
101 ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */
102
103 ftdi->readbuffer = NULL;
104 ftdi->readbuffer_offset = 0;
105 ftdi->readbuffer_remaining = 0;
106 ftdi->writebuffer_chunksize = 4096;
107 ftdi->max_packet_size = 0;
108 ftdi->error_str = NULL;
109 ftdi->module_detach_mode = AUTO_DETACH_SIO_MODULE;
110
111 if (libusb_init(&ftdi->usb_ctx) < 0)
112 ftdi_error_return(-3, "libusb_init() failed");
113
114 ftdi_set_interface(ftdi, INTERFACE_ANY);
115 ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */
116
117 eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom));
118 if (eeprom == 0)
119 ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom");
120 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
121 ftdi->eeprom = eeprom;
122
123 /* All fine. Now allocate the readbuffer */
124 return ftdi_read_data_set_chunksize(ftdi, 4096);
125}
126
127/**
128 Allocate and initialize a new ftdi_context
129
130 \return a pointer to a new ftdi_context, or NULL on failure
131*/
132struct ftdi_context *ftdi_new(void)
133{
134 struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context));
135
136 if (ftdi == NULL)
137 {
138 return NULL;
139 }
140
141 if (ftdi_init(ftdi) != 0)
142 {
143 free(ftdi);
144 return NULL;
145 }
146
147 return ftdi;
148}
149
150/**
151 Open selected channels on a chip, otherwise use first channel.
152
153 \param ftdi pointer to ftdi_context
154 \param interface Interface to use for FT2232C/2232H/4232H chips.
155
156 \retval 0: all fine
157 \retval -1: unknown interface
158 \retval -2: USB device unavailable
159 \retval -3: Device already open, interface can't be set in that state
160*/
161int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface)
162{
163 if (ftdi == NULL)
164 ftdi_error_return(-2, "USB device unavailable");
165
166 if (ftdi->usb_dev != NULL)
167 {
168 int check_interface = interface;
169 if (check_interface == INTERFACE_ANY)
170 check_interface = INTERFACE_A;
171
172 if (ftdi->index != check_interface)
173 ftdi_error_return(-3, "Interface can not be changed on an already open device");
174 }
175
176 switch (interface)
177 {
178 case INTERFACE_ANY:
179 case INTERFACE_A:
180 ftdi->interface = 0;
181 ftdi->index = INTERFACE_A;
182 ftdi->in_ep = 0x02;
183 ftdi->out_ep = 0x81;
184 break;
185 case INTERFACE_B:
186 ftdi->interface = 1;
187 ftdi->index = INTERFACE_B;
188 ftdi->in_ep = 0x04;
189 ftdi->out_ep = 0x83;
190 break;
191 case INTERFACE_C:
192 ftdi->interface = 2;
193 ftdi->index = INTERFACE_C;
194 ftdi->in_ep = 0x06;
195 ftdi->out_ep = 0x85;
196 break;
197 case INTERFACE_D:
198 ftdi->interface = 3;
199 ftdi->index = INTERFACE_D;
200 ftdi->in_ep = 0x08;
201 ftdi->out_ep = 0x87;
202 break;
203 default:
204 ftdi_error_return(-1, "Unknown interface");
205 }
206 return 0;
207}
208
209/**
210 Deinitializes a ftdi_context.
211
212 \param ftdi pointer to ftdi_context
213*/
214void ftdi_deinit(struct ftdi_context *ftdi)
215{
216 if (ftdi == NULL)
217 return;
218
219 ftdi_usb_close_internal (ftdi);
220
221 if (ftdi->readbuffer != NULL)
222 {
223 free(ftdi->readbuffer);
224 ftdi->readbuffer = NULL;
225 }
226
227 if (ftdi->eeprom != NULL)
228 {
229 if (ftdi->eeprom->manufacturer != 0)
230 {
231 free(ftdi->eeprom->manufacturer);
232 ftdi->eeprom->manufacturer = 0;
233 }
234 if (ftdi->eeprom->product != 0)
235 {
236 free(ftdi->eeprom->product);
237 ftdi->eeprom->product = 0;
238 }
239 if (ftdi->eeprom->serial != 0)
240 {
241 free(ftdi->eeprom->serial);
242 ftdi->eeprom->serial = 0;
243 }
244 free(ftdi->eeprom);
245 ftdi->eeprom = NULL;
246 }
247
248 if (ftdi->usb_ctx)
249 {
250 libusb_exit(ftdi->usb_ctx);
251 ftdi->usb_ctx = NULL;
252 }
253}
254
255/**
256 Deinitialize and free an ftdi_context.
257
258 \param ftdi pointer to ftdi_context
259*/
260void ftdi_free(struct ftdi_context *ftdi)
261{
262 ftdi_deinit(ftdi);
263 free(ftdi);
264}
265
266/**
267 Use an already open libusb device.
268
269 \param ftdi pointer to ftdi_context
270 \param usb libusb libusb_device_handle to use
271*/
272void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb)
273{
274 if (ftdi == NULL)
275 return;
276
277 ftdi->usb_dev = usb;
278}
279
280/**
281 * @brief Get libftdi library version
282 *
283 * @return ftdi_version_info Library version information
284 **/
285struct ftdi_version_info ftdi_get_library_version(void)
286{
287 struct ftdi_version_info ver;
288
289 ver.major = FTDI_MAJOR_VERSION;
290 ver.minor = FTDI_MINOR_VERSION;
291 ver.micro = FTDI_MICRO_VERSION;
292 ver.version_str = FTDI_VERSION_STRING;
293 ver.snapshot_str = FTDI_SNAPSHOT_VERSION;
294
295 return ver;
296}
297
298/**
299 Finds all ftdi devices with given VID:PID on the usb bus. Creates a new
300 ftdi_device_list which needs to be deallocated by ftdi_list_free() after
301 use. With VID:PID 0:0, search for the default devices
302 (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014, 0x403:0x6015)
303
304 \param ftdi pointer to ftdi_context
305 \param devlist Pointer where to store list of found devices
306 \param vendor Vendor ID to search for
307 \param product Product ID to search for
308
309 \retval >0: number of devices found
310 \retval -3: out of memory
311 \retval -5: libusb_get_device_list() failed
312 \retval -6: libusb_get_device_descriptor() failed
313*/
314int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product)
315{
316 struct ftdi_device_list **curdev;
317 libusb_device *dev;
318 libusb_device **devs;
319 int count = 0;
320 int i = 0;
321
322 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
323 ftdi_error_return(-5, "libusb_get_device_list() failed");
324
325 curdev = devlist;
326 *curdev = NULL;
327
328 while ((dev = devs[i++]) != NULL)
329 {
330 struct libusb_device_descriptor desc;
331
332 if (libusb_get_device_descriptor(dev, &desc) < 0)
333 ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs);
334
335 if (((vendor || product) &&
336 desc.idVendor == vendor && desc.idProduct == product) ||
337 (!(vendor || product) &&
338 (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010
339 || desc.idProduct == 0x6011 || desc.idProduct == 0x6014
340 || desc.idProduct == 0x6015)))
341 {
342 *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list));
343 if (!*curdev)
344 ftdi_error_return_free_device_list(-3, "out of memory", devs);
345
346 (*curdev)->next = NULL;
347 (*curdev)->dev = dev;
348 libusb_ref_device(dev);
349 curdev = &(*curdev)->next;
350 count++;
351 }
352 }
353 libusb_free_device_list(devs,1);
354 return count;
355}
356
357/**
358 Frees a usb device list.
359
360 \param devlist USB device list created by ftdi_usb_find_all()
361*/
362void ftdi_list_free(struct ftdi_device_list **devlist)
363{
364 struct ftdi_device_list *curdev, *next;
365
366 for (curdev = *devlist; curdev != NULL;)
367 {
368 next = curdev->next;
369 libusb_unref_device(curdev->dev);
370 free(curdev);
371 curdev = next;
372 }
373
374 *devlist = NULL;
375}
376
377/**
378 Frees a usb device list.
379
380 \param devlist USB device list created by ftdi_usb_find_all()
381*/
382void ftdi_list_free2(struct ftdi_device_list *devlist)
383{
384 ftdi_list_free(&devlist);
385}
386
387/**
388 Return device ID strings from the usb device.
389
390 The parameters manufacturer, description and serial may be NULL
391 or pointer to buffers to store the fetched strings.
392
393 \note Use this function only in combination with ftdi_usb_find_all()
394 as it closes the internal "usb_dev" after use.
395
396 \param ftdi pointer to ftdi_context
397 \param dev libusb usb_dev to use
398 \param manufacturer Store manufacturer string here if not NULL
399 \param mnf_len Buffer size of manufacturer string
400 \param description Store product description string here if not NULL
401 \param desc_len Buffer size of product description string
402 \param serial Store serial string here if not NULL
403 \param serial_len Buffer size of serial string
404
405 \retval 0: all fine
406 \retval -1: wrong arguments
407 \retval -4: unable to open device
408 \retval -7: get product manufacturer failed
409 \retval -8: get product description failed
410 \retval -9: get serial number failed
411 \retval -11: libusb_get_device_descriptor() failed
412*/
413int ftdi_usb_get_strings(struct ftdi_context *ftdi,
414 struct libusb_device *dev,
415 char *manufacturer, int mnf_len,
416 char *description, int desc_len,
417 char *serial, int serial_len)
418{
419 int ret;
420
421 if ((ftdi==NULL) || (dev==NULL))
422 return -1;
423
424 if (ftdi->usb_dev == NULL && libusb_open(dev, &ftdi->usb_dev) < 0)
425 ftdi_error_return(-4, "libusb_open() failed");
426
427 // ftdi->usb_dev will not be NULL when entering ftdi_usb_get_strings2(), so
428 // it won't be closed either. This allows us to close it whether we actually
429 // called libusb_open() up above or not. This matches the expected behavior
430 // (and note) for ftdi_usb_get_strings().
431 ret = ftdi_usb_get_strings2(ftdi, dev,
432 manufacturer, mnf_len,
433 description, desc_len,
434 serial, serial_len);
435
436 // only close it if it was successful, as all other return codes close
437 // before returning already.
438 if (ret == 0)
439 ftdi_usb_close_internal(ftdi);
440
441 return ret;
442}
443
444/**
445 Return device ID strings from the usb device.
446
447 The parameters manufacturer, description and serial may be NULL
448 or pointer to buffers to store the fetched strings.
449
450 \note The old function ftdi_usb_get_strings() always closes the device.
451 This version only closes the device if it was opened by it.
452
453 \param ftdi pointer to ftdi_context
454 \param dev libusb usb_dev to use
455 \param manufacturer Store manufacturer string here if not NULL
456 \param mnf_len Buffer size of manufacturer string
457 \param description Store product description string here if not NULL
458 \param desc_len Buffer size of product description string
459 \param serial Store serial string here if not NULL
460 \param serial_len Buffer size of serial string
461
462 \retval 0: all fine
463 \retval -1: wrong arguments
464 \retval -4: unable to open device
465 \retval -7: get product manufacturer failed
466 \retval -8: get product description failed
467 \retval -9: get serial number failed
468 \retval -11: libusb_get_device_descriptor() failed
469*/
470int ftdi_usb_get_strings2(struct ftdi_context *ftdi, struct libusb_device *dev,
471 char *manufacturer, int mnf_len,
472 char *description, int desc_len,
473 char *serial, int serial_len)
474{
475 struct libusb_device_descriptor desc;
476 char need_open;
477
478 if ((ftdi==NULL) || (dev==NULL))
479 return -1;
480
481 need_open = (ftdi->usb_dev == NULL);
482 if (need_open && libusb_open(dev, &ftdi->usb_dev) < 0)
483 ftdi_error_return(-4, "libusb_open() failed");
484
485 if (libusb_get_device_descriptor(dev, &desc) < 0)
486 ftdi_error_return(-11, "libusb_get_device_descriptor() failed");
487
488 if (manufacturer != NULL && mnf_len > 0)
489 {
490 if (desc.iManufacturer == 0)
491 {
492 manufacturer[0] = '\0';
493 }
494 else if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0)
495 {
496 ftdi_usb_close_internal (ftdi);
497 ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed");
498 }
499 }
500
501 if (description != NULL && desc_len > 0)
502 {
503 if (desc.iProduct == 0)
504 {
505 description[0] = '\0';
506 }
507 else if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0)
508 {
509 ftdi_usb_close_internal (ftdi);
510 ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed");
511 }
512 }
513
514 if (serial != NULL && serial_len > 0)
515 {
516 if (desc.iSerialNumber == 0)
517 {
518 serial[0] = '\0';
519 }
520 else if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0)
521 {
522 ftdi_usb_close_internal (ftdi);
523 ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed");
524 }
525 }
526
527 if (need_open)
528 ftdi_usb_close_internal (ftdi);
529
530 return 0;
531}
532
533/**
534 * Internal function to determine the maximum packet size.
535 * \param ftdi pointer to ftdi_context
536 * \param dev libusb usb_dev to use
537 * \retval Maximum packet size for this device
538 */
539static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev)
540{
541 struct libusb_device_descriptor desc;
542 struct libusb_config_descriptor *config0;
543 unsigned int packet_size;
544
545 // Sanity check
546 if (ftdi == NULL || dev == NULL)
547 return 64;
548
549 // Determine maximum packet size. Init with default value.
550 // New hi-speed devices from FTDI use a packet size of 512 bytes
551 // but could be connected to a normal speed USB hub -> 64 bytes packet size.
552 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
553 packet_size = 512;
554 else
555 packet_size = 64;
556
557 if (libusb_get_device_descriptor(dev, &desc) < 0)
558 return packet_size;
559
560 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
561 return packet_size;
562
563 if (desc.bNumConfigurations > 0)
564 {
565 if (ftdi->interface < config0->bNumInterfaces)
566 {
567 struct libusb_interface interface = config0->interface[ftdi->interface];
568 if (interface.num_altsetting > 0)
569 {
570 struct libusb_interface_descriptor descriptor = interface.altsetting[0];
571 if (descriptor.bNumEndpoints > 0)
572 {
573 packet_size = descriptor.endpoint[0].wMaxPacketSize;
574 }
575 }
576 }
577 }
578
579 libusb_free_config_descriptor (config0);
580 return packet_size;
581}
582
583/**
584 Opens a ftdi device given by an usb_device.
585
586 \param ftdi pointer to ftdi_context
587 \param dev libusb usb_dev to use
588
589 \retval 0: all fine
590 \retval -3: unable to config device
591 \retval -4: unable to open device
592 \retval -5: unable to claim device
593 \retval -6: reset failed
594 \retval -7: set baudrate failed
595 \retval -8: ftdi context invalid
596 \retval -9: libusb_get_device_descriptor() failed
597 \retval -10: libusb_get_config_descriptor() failed
598 \retval -11: libusb_detach_kernel_driver() failed
599 \retval -12: libusb_get_configuration() failed
600*/
601int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev)
602{
603 struct libusb_device_descriptor desc;
604 struct libusb_config_descriptor *config0;
605 int cfg, cfg0, detach_errno = 0;
606
607 if (ftdi == NULL)
608 ftdi_error_return(-8, "ftdi context invalid");
609
610 if (libusb_open(dev, &ftdi->usb_dev) < 0)
611 ftdi_error_return(-4, "libusb_open() failed");
612
613 if (libusb_get_device_descriptor(dev, &desc) < 0)
614 ftdi_error_return(-9, "libusb_get_device_descriptor() failed");
615
616 if (libusb_get_config_descriptor(dev, 0, &config0) < 0)
617 ftdi_error_return(-10, "libusb_get_config_descriptor() failed");
618 cfg0 = config0->bConfigurationValue;
619 libusb_free_config_descriptor (config0);
620
621 // Try to detach ftdi_sio kernel module.
622 //
623 // The return code is kept in a separate variable and only parsed
624 // if usb_set_configuration() or usb_claim_interface() fails as the
625 // detach operation might be denied and everything still works fine.
626 // Likely scenario is a static ftdi_sio kernel module.
627 if (ftdi->module_detach_mode == AUTO_DETACH_SIO_MODULE)
628 {
629 if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0)
630 detach_errno = errno;
631 }
632 else if (ftdi->module_detach_mode == AUTO_DETACH_REATACH_SIO_MODULE)
633 {
634 if (libusb_set_auto_detach_kernel_driver(ftdi->usb_dev, 1) != LIBUSB_SUCCESS)
635 detach_errno = errno;
636 }
637
638 if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0)
639 ftdi_error_return(-12, "libusb_get_configuration () failed");
640 // set configuration (needed especially for windows)
641 // tolerate EBUSY: one device with one configuration, but two interfaces
642 // and libftdi sessions to both interfaces (e.g. FT2232)
643 if (desc.bNumConfigurations > 0 && cfg != cfg0)
644 {
645 if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0)
646 {
647 ftdi_usb_close_internal (ftdi);
648 if (detach_errno == EPERM)
649 {
650 ftdi_error_return(-8, "inappropriate permissions on device!");
651 }
652 else
653 {
654 ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use");
655 }
656 }
657 }
658
659 if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0)
660 {
661 ftdi_usb_close_internal (ftdi);
662 if (detach_errno == EPERM)
663 {
664 ftdi_error_return(-8, "inappropriate permissions on device!");
665 }
666 else
667 {
668 ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use");
669 }
670 }
671
672 if (ftdi_usb_reset (ftdi) != 0)
673 {
674 ftdi_usb_close_internal (ftdi);
675 ftdi_error_return(-6, "ftdi_usb_reset failed");
676 }
677
678 // Try to guess chip type
679 // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0
680 if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200
681 && desc.iSerialNumber == 0))
682 ftdi->type = TYPE_BM;
683 else if (desc.bcdDevice == 0x200)
684 ftdi->type = TYPE_AM;
685 else if (desc.bcdDevice == 0x500)
686 ftdi->type = TYPE_2232C;
687 else if (desc.bcdDevice == 0x600)
688 ftdi->type = TYPE_R;
689 else if (desc.bcdDevice == 0x700)
690 ftdi->type = TYPE_2232H;
691 else if (desc.bcdDevice == 0x800)
692 ftdi->type = TYPE_4232H;
693 else if (desc.bcdDevice == 0x900)
694 ftdi->type = TYPE_232H;
695 else if (desc.bcdDevice == 0x1000)
696 ftdi->type = TYPE_230X;
697
698 // Determine maximum packet size
699 ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev);
700
701 if (ftdi_set_baudrate (ftdi, 9600) != 0)
702 {
703 ftdi_usb_close_internal (ftdi);
704 ftdi_error_return(-7, "set baudrate failed");
705 }
706
707 ftdi_error_return(0, "all fine");
708}
709
710/**
711 Opens the first device with a given vendor and product ids.
712
713 \param ftdi pointer to ftdi_context
714 \param vendor Vendor ID
715 \param product Product ID
716
717 \retval same as ftdi_usb_open_desc()
718*/
719int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product)
720{
721 return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL);
722}
723
724/**
725 Opens the first device with a given, vendor id, product id,
726 description and serial.
727
728 \param ftdi pointer to ftdi_context
729 \param vendor Vendor ID
730 \param product Product ID
731 \param description Description to search for. Use NULL if not needed.
732 \param serial Serial to search for. Use NULL if not needed.
733
734 \retval 0: all fine
735 \retval -3: usb device not found
736 \retval -4: unable to open device
737 \retval -5: unable to claim device
738 \retval -6: reset failed
739 \retval -7: set baudrate failed
740 \retval -8: get product description failed
741 \retval -9: get serial number failed
742 \retval -12: libusb_get_device_list() failed
743 \retval -13: libusb_get_device_descriptor() failed
744*/
745int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product,
746 const char* description, const char* serial)
747{
748 return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0);
749}
750
751/**
752 Opens the index-th device with a given, vendor id, product id,
753 description and serial.
754
755 \param ftdi pointer to ftdi_context
756 \param vendor Vendor ID
757 \param product Product ID
758 \param description Description to search for. Use NULL if not needed.
759 \param serial Serial to search for. Use NULL if not needed.
760 \param index Number of matching device to open if there are more than one, starts with 0.
761
762 \retval 0: all fine
763 \retval -1: usb_find_busses() failed
764 \retval -2: usb_find_devices() failed
765 \retval -3: usb device not found
766 \retval -4: unable to open device
767 \retval -5: unable to claim device
768 \retval -6: reset failed
769 \retval -7: set baudrate failed
770 \retval -8: get product description failed
771 \retval -9: get serial number failed
772 \retval -10: unable to close device
773 \retval -11: ftdi context invalid
774 \retval -12: libusb_get_device_list() failed
775*/
776int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product,
777 const char* description, const char* serial, unsigned int index)
778{
779 libusb_device *dev;
780 libusb_device **devs;
781 char string[256];
782 int i = 0;
783
784 if (ftdi == NULL)
785 ftdi_error_return(-11, "ftdi context invalid");
786
787 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
788 ftdi_error_return(-12, "libusb_get_device_list() failed");
789
790 while ((dev = devs[i++]) != NULL)
791 {
792 struct libusb_device_descriptor desc;
793 int res;
794
795 if (libusb_get_device_descriptor(dev, &desc) < 0)
796 ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs);
797
798 if (desc.idVendor == vendor && desc.idProduct == product)
799 {
800 if (libusb_open(dev, &ftdi->usb_dev) < 0)
801 ftdi_error_return_free_device_list(-4, "usb_open() failed", devs);
802
803 if (description != NULL)
804 {
805 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0)
806 {
807 ftdi_usb_close_internal (ftdi);
808 ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs);
809 }
810 if (strncmp(string, description, sizeof(string)) != 0)
811 {
812 ftdi_usb_close_internal (ftdi);
813 continue;
814 }
815 }
816 if (serial != NULL)
817 {
818 if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0)
819 {
820 ftdi_usb_close_internal (ftdi);
821 ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs);
822 }
823 if (strncmp(string, serial, sizeof(string)) != 0)
824 {
825 ftdi_usb_close_internal (ftdi);
826 continue;
827 }
828 }
829
830 ftdi_usb_close_internal (ftdi);
831
832 if (index > 0)
833 {
834 index--;
835 continue;
836 }
837
838 res = ftdi_usb_open_dev(ftdi, dev);
839 libusb_free_device_list(devs,1);
840 return res;
841 }
842 }
843
844 // device not found
845 ftdi_error_return_free_device_list(-3, "device not found", devs);
846}
847
848/**
849 Opens the device at a given USB bus and device address.
850
851 \param ftdi pointer to ftdi_context
852 \param bus Bus number
853 \param addr Device address
854
855 \retval 0: all fine
856 \retval -1: usb_find_busses() failed
857 \retval -2: usb_find_devices() failed
858 \retval -3: usb device not found
859 \retval -4: unable to open device
860 \retval -5: unable to claim device
861 \retval -6: reset failed
862 \retval -7: set baudrate failed
863 \retval -8: get product description failed
864 \retval -9: get serial number failed
865 \retval -10: unable to close device
866 \retval -11: ftdi context invalid
867 \retval -12: libusb_get_device_list() failed
868*/
869int ftdi_usb_open_bus_addr(struct ftdi_context *ftdi, uint8_t bus, uint8_t addr)
870{
871 libusb_device *dev;
872 libusb_device **devs;
873 int i = 0;
874
875 if (ftdi == NULL)
876 ftdi_error_return(-11, "ftdi context invalid");
877
878 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
879 ftdi_error_return(-12, "libusb_get_device_list() failed");
880
881 while ((dev = devs[i++]) != NULL)
882 {
883 if (libusb_get_bus_number(dev) == bus && libusb_get_device_address(dev) == addr)
884 {
885 int res;
886 res = ftdi_usb_open_dev(ftdi, dev);
887 libusb_free_device_list(devs,1);
888 return res;
889 }
890 }
891
892 // device not found
893 ftdi_error_return_free_device_list(-3, "device not found", devs);
894}
895
896/**
897 Opens the ftdi-device described by a description-string.
898 Intended to be used for parsing a device-description given as commandline argument.
899
900 \param ftdi pointer to ftdi_context
901 \param description NULL-terminated description-string, using this format:
902 \li <tt>d:\<devicenode></tt> path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/)
903 \li <tt>i:\<vendor>:\<product></tt> first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x")
904 \li <tt>i:\<vendor>:\<product>:\<index></tt> as above with index being the number of the device (starting with 0) if there are more than one
905 \li <tt>s:\<vendor>:\<product>:\<serial></tt> first device with given vendor id, product id and serial string
906
907 \note The description format may be extended in later versions.
908
909 \retval 0: all fine
910 \retval -2: libusb_get_device_list() failed
911 \retval -3: usb device not found
912 \retval -4: unable to open device
913 \retval -5: unable to claim device
914 \retval -6: reset failed
915 \retval -7: set baudrate failed
916 \retval -8: get product description failed
917 \retval -9: get serial number failed
918 \retval -10: unable to close device
919 \retval -11: illegal description format
920 \retval -12: ftdi context invalid
921*/
922int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description)
923{
924 if (ftdi == NULL)
925 ftdi_error_return(-12, "ftdi context invalid");
926
927 if (description[0] == 0 || description[1] != ':')
928 ftdi_error_return(-11, "illegal description format");
929
930 if (description[0] == 'd')
931 {
932 libusb_device *dev;
933 libusb_device **devs;
934 unsigned int bus_number, device_address;
935 int i = 0;
936
937 if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0)
938 ftdi_error_return(-2, "libusb_get_device_list() failed");
939
940 /* XXX: This doesn't handle symlinks/odd paths/etc... */
941 if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2)
942 ftdi_error_return_free_device_list(-11, "illegal description format", devs);
943
944 while ((dev = devs[i++]) != NULL)
945 {
946 int ret;
947 if (bus_number == libusb_get_bus_number (dev)
948 && device_address == libusb_get_device_address (dev))
949 {
950 ret = ftdi_usb_open_dev(ftdi, dev);
951 libusb_free_device_list(devs,1);
952 return ret;
953 }
954 }
955
956 // device not found
957 ftdi_error_return_free_device_list(-3, "device not found", devs);
958 }
959 else if (description[0] == 'i' || description[0] == 's')
960 {
961 unsigned int vendor;
962 unsigned int product;
963 unsigned int index=0;
964 const char *serial=NULL;
965 const char *startp, *endp;
966
967 errno=0;
968 startp=description+2;
969 vendor=strtoul((char*)startp,(char**)&endp,0);
970 if (*endp != ':' || endp == startp || errno != 0)
971 ftdi_error_return(-11, "illegal description format");
972
973 startp=endp+1;
974 product=strtoul((char*)startp,(char**)&endp,0);
975 if (endp == startp || errno != 0)
976 ftdi_error_return(-11, "illegal description format");
977
978 if (description[0] == 'i' && *endp != 0)
979 {
980 /* optional index field in i-mode */
981 if (*endp != ':')
982 ftdi_error_return(-11, "illegal description format");
983
984 startp=endp+1;
985 index=strtoul((char*)startp,(char**)&endp,0);
986 if (*endp != 0 || endp == startp || errno != 0)
987 ftdi_error_return(-11, "illegal description format");
988 }
989 if (description[0] == 's')
990 {
991 if (*endp != ':')
992 ftdi_error_return(-11, "illegal description format");
993
994 /* rest of the description is the serial */
995 serial=endp+1;
996 }
997
998 return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index);
999 }
1000 else
1001 {
1002 ftdi_error_return(-11, "illegal description format");
1003 }
1004}
1005
1006/**
1007 Resets the ftdi device.
1008
1009 \param ftdi pointer to ftdi_context
1010
1011 \retval 0: all fine
1012 \retval -1: FTDI reset failed
1013 \retval -2: USB device unavailable
1014*/
1015int ftdi_usb_reset(struct ftdi_context *ftdi)
1016{
1017 if (ftdi == NULL || ftdi->usb_dev == NULL)
1018 ftdi_error_return(-2, "USB device unavailable");
1019
1020 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1021 SIO_RESET_REQUEST, SIO_RESET_SIO,
1022 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1023 ftdi_error_return(-1,"FTDI reset failed");
1024
1025 // Invalidate data in the readbuffer
1026 ftdi->readbuffer_offset = 0;
1027 ftdi->readbuffer_remaining = 0;
1028
1029 return 0;
1030}
1031
1032/**
1033 Clears the read buffer on the chip and the internal read buffer.
1034 This is the correct behavior for an RX flush.
1035
1036 \param ftdi pointer to ftdi_context
1037
1038 \retval 0: all fine
1039 \retval -1: read buffer purge failed
1040 \retval -2: USB device unavailable
1041*/
1042int ftdi_tciflush(struct ftdi_context *ftdi)
1043{
1044 if (ftdi == NULL || ftdi->usb_dev == NULL)
1045 ftdi_error_return(-2, "USB device unavailable");
1046
1047 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1048 SIO_RESET_REQUEST, SIO_TCIFLUSH,
1049 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1050 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1051
1052 // Invalidate data in the readbuffer
1053 ftdi->readbuffer_offset = 0;
1054 ftdi->readbuffer_remaining = 0;
1055
1056 return 0;
1057}
1058
1059
1060/**
1061 Clears the write buffer on the chip and the internal read buffer.
1062 This is incorrect behavior for an RX flush.
1063
1064 \param ftdi pointer to ftdi_context
1065
1066 \retval 0: all fine
1067 \retval -1: write buffer purge failed
1068 \retval -2: USB device unavailable
1069
1070 \deprecated Use \ref ftdi_tciflush(struct ftdi_context *ftdi)
1071*/
1072int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi)
1073{
1074 if (ftdi == NULL || ftdi->usb_dev == NULL)
1075 ftdi_error_return(-2, "USB device unavailable");
1076
1077 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1078 SIO_RESET_REQUEST, SIO_RESET_PURGE_RX,
1079 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1080 ftdi_error_return(-1, "FTDI purge of RX buffer failed");
1081
1082 // Invalidate data in the readbuffer
1083 ftdi->readbuffer_offset = 0;
1084 ftdi->readbuffer_remaining = 0;
1085
1086 return 0;
1087}
1088
1089/**
1090 Clears the write buffer on the chip.
1091 This is correct behavior for a TX flush.
1092
1093 \param ftdi pointer to ftdi_context
1094
1095 \retval 0: all fine
1096 \retval -1: write buffer purge failed
1097 \retval -2: USB device unavailable
1098*/
1099int ftdi_tcoflush(struct ftdi_context *ftdi)
1100{
1101 if (ftdi == NULL || ftdi->usb_dev == NULL)
1102 ftdi_error_return(-2, "USB device unavailable");
1103
1104 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1105 SIO_RESET_REQUEST, SIO_TCOFLUSH,
1106 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1107 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1108
1109 return 0;
1110}
1111
1112
1113/**
1114 Clears the read buffer on the chip.
1115 This is incorrect behavior for a TX flush.
1116
1117 \param ftdi pointer to ftdi_context
1118
1119 \retval 0: all fine
1120 \retval -1: read buffer purge failed
1121 \retval -2: USB device unavailable
1122
1123 \deprecated Use \ref ftdi_tcoflush(struct ftdi_context *ftdi)
1124*/
1125int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi)
1126{
1127 if (ftdi == NULL || ftdi->usb_dev == NULL)
1128 ftdi_error_return(-2, "USB device unavailable");
1129
1130 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1131 SIO_RESET_REQUEST, SIO_RESET_PURGE_TX,
1132 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1133 ftdi_error_return(-1, "FTDI purge of TX buffer failed");
1134
1135 return 0;
1136}
1137
1138/**
1139 Clears the RX and TX FIFOs on the chip and the internal read buffer.
1140 This is correct behavior for both RX and TX flush.
1141
1142 \param ftdi pointer to ftdi_context
1143
1144 \retval 0: all fine
1145 \retval -1: read buffer purge failed
1146 \retval -2: write buffer purge failed
1147 \retval -3: USB device unavailable
1148*/
1149int ftdi_tcioflush(struct ftdi_context *ftdi)
1150{
1151 int result;
1152
1153 if (ftdi == NULL || ftdi->usb_dev == NULL)
1154 ftdi_error_return(-3, "USB device unavailable");
1155
1156 result = ftdi_tcoflush(ftdi);
1157 if (result < 0)
1158 return -1;
1159
1160 result = ftdi_tciflush(ftdi);
1161 if (result < 0)
1162 return -2;
1163
1164 return 0;
1165}
1166
1167/**
1168 Clears the buffers on the chip and the internal read buffer.
1169 While coded incorrectly, the result is satisfactory.
1170
1171 \param ftdi pointer to ftdi_context
1172
1173 \retval 0: all fine
1174 \retval -1: read buffer purge failed
1175 \retval -2: write buffer purge failed
1176 \retval -3: USB device unavailable
1177
1178 \deprecated Use \ref ftdi_tcioflush(struct ftdi_context *ftdi)
1179*/
1180int ftdi_usb_purge_buffers(struct ftdi_context *ftdi)
1181{
1182 int result;
1183
1184 if (ftdi == NULL || ftdi->usb_dev == NULL)
1185 ftdi_error_return(-3, "USB device unavailable");
1186
1187 result = ftdi_usb_purge_rx_buffer(ftdi);
1188 if (result < 0)
1189 return -1;
1190
1191 result = ftdi_usb_purge_tx_buffer(ftdi);
1192 if (result < 0)
1193 return -2;
1194
1195 return 0;
1196}
1197
1198
1199
1200/**
1201 Closes the ftdi device. Call ftdi_deinit() if you're cleaning up.
1202
1203 \param ftdi pointer to ftdi_context
1204
1205 \retval 0: all fine
1206 \retval -1: usb_release failed
1207 \retval -3: ftdi context invalid
1208*/
1209int ftdi_usb_close(struct ftdi_context *ftdi)
1210{
1211 int rtn = 0;
1212
1213 if (ftdi == NULL)
1214 ftdi_error_return(-3, "ftdi context invalid");
1215
1216 if (ftdi->usb_dev != NULL)
1217 if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0)
1218 rtn = -1;
1219
1220 ftdi_usb_close_internal (ftdi);
1221
1222 return rtn;
1223}
1224
1225/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate
1226 to encoded divisor and the achievable baudrate
1227 Function is only used internally
1228 \internal
1229
1230 See AN120
1231 clk/1 -> 0
1232 clk/1.5 -> 1
1233 clk/2 -> 2
1234 From /2, 0.125/ 0.25 and 0.5 steps may be taken
1235 The fractional part has frac_code encoding
1236*/
1237static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor)
1238
1239{
1240 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1241 static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1};
1242 static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3};
1243 int divisor, best_divisor, best_baud, best_baud_diff;
1244 int i;
1245 divisor = 24000000 / baudrate;
1246
1247 // Round down to supported fraction (AM only)
1248 divisor -= am_adjust_dn[divisor & 7];
1249
1250 // Try this divisor and the one above it (because division rounds down)
1251 best_divisor = 0;
1252 best_baud = 0;
1253 best_baud_diff = 0;
1254 for (i = 0; i < 2; i++)
1255 {
1256 int try_divisor = divisor + i;
1257 int baud_estimate;
1258 int baud_diff;
1259
1260 // Round up to supported divisor value
1261 if (try_divisor <= 8)
1262 {
1263 // Round up to minimum supported divisor
1264 try_divisor = 8;
1265 }
1266 else if (divisor < 16)
1267 {
1268 // AM doesn't support divisors 9 through 15 inclusive
1269 try_divisor = 16;
1270 }
1271 else
1272 {
1273 // Round up to supported fraction (AM only)
1274 try_divisor += am_adjust_up[try_divisor & 7];
1275 if (try_divisor > 0x1FFF8)
1276 {
1277 // Round down to maximum supported divisor value (for AM)
1278 try_divisor = 0x1FFF8;
1279 }
1280 }
1281 // Get estimated baud rate (to nearest integer)
1282 baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor;
1283 // Get absolute difference from requested baud rate
1284 if (baud_estimate < baudrate)
1285 {
1286 baud_diff = baudrate - baud_estimate;
1287 }
1288 else
1289 {
1290 baud_diff = baud_estimate - baudrate;
1291 }
1292 if (i == 0 || baud_diff < best_baud_diff)
1293 {
1294 // Closest to requested baud rate so far
1295 best_divisor = try_divisor;
1296 best_baud = baud_estimate;
1297 best_baud_diff = baud_diff;
1298 if (baud_diff == 0)
1299 {
1300 // Spot on! No point trying
1301 break;
1302 }
1303 }
1304 }
1305 // Encode the best divisor value
1306 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14);
1307 // Deal with special cases for encoded value
1308 if (*encoded_divisor == 1)
1309 {
1310 *encoded_divisor = 0; // 3000000 baud
1311 }
1312 else if (*encoded_divisor == 0x4001)
1313 {
1314 *encoded_divisor = 1; // 2000000 baud (BM only)
1315 }
1316 return best_baud;
1317}
1318
1319/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor
1320 to encoded divisor and the achievable baudrate
1321 Function is only used internally
1322 \internal
1323
1324 See AN120
1325 clk/1 -> 0
1326 clk/1.5 -> 1
1327 clk/2 -> 2
1328 From /2, 0.125 steps may be taken.
1329 The fractional part has frac_code encoding
1330
1331 value[13:0] of value is the divisor
1332 index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else
1333
1334 H Type have all features above with
1335 {index[8],value[15:14]} is the encoded subdivisor
1336
1337 FT232R, FT2232 and FT232BM have no option for 12 MHz and with
1338 {index[0],value[15:14]} is the encoded subdivisor
1339
1340 AM Type chips have only four fractional subdivisors at value[15:14]
1341 for subdivisors 0, 0.5, 0.25, 0.125
1342*/
1343static int ftdi_to_clkbits(int baudrate, int clk, int clk_div, unsigned long *encoded_divisor)
1344{
1345 static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7};
1346 int best_baud = 0;
1347 int divisor, best_divisor;
1348 if (baudrate >= clk/clk_div)
1349 {
1350 *encoded_divisor = 0;
1351 best_baud = clk/clk_div;
1352 }
1353 else if (baudrate >= clk/(clk_div + clk_div/2))
1354 {
1355 *encoded_divisor = 1;
1356 best_baud = clk/(clk_div + clk_div/2);
1357 }
1358 else if (baudrate >= clk/(2*clk_div))
1359 {
1360 *encoded_divisor = 2;
1361 best_baud = clk/(2*clk_div);
1362 }
1363 else
1364 {
1365 /* We divide by 16 to have 3 fractional bits and one bit for rounding */
1366 divisor = clk*16/clk_div / baudrate;
1367 if (divisor & 1) /* Decide if to round up or down*/
1368 best_divisor = divisor /2 +1;
1369 else
1370 best_divisor = divisor/2;
1371 if(best_divisor > 0x20000)
1372 best_divisor = 0x1ffff;
1373 best_baud = clk*16/clk_div/best_divisor;
1374 if (best_baud & 1) /* Decide if to round up or down*/
1375 best_baud = best_baud /2 +1;
1376 else
1377 best_baud = best_baud /2;
1378 *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14);
1379 }
1380 return best_baud;
1381}
1382/**
1383 ftdi_convert_baudrate returns nearest supported baud rate to that requested.
1384 Function is only used internally
1385 \internal
1386*/
1387static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi,
1388 unsigned short *value, unsigned short *index)
1389{
1390 int best_baud;
1391 unsigned long encoded_divisor;
1392
1393 if (baudrate <= 0)
1394 {
1395 // Return error
1396 return -1;
1397 }
1398
1399#define H_CLK 120000000
1400#define C_CLK 48000000
1401 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H))
1402 {
1403 if(baudrate*10 > H_CLK /0x3fff)
1404 {
1405 /* On H Devices, use 12 000 000 Baudrate when possible
1406 We have a 14 bit divisor, a 1 bit divisor switch (10 or 16)
1407 three fractional bits and a 120 MHz clock
1408 Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for
1409 DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/
1410 best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor);
1411 encoded_divisor |= 0x20000; /* switch on CLK/10*/
1412 }
1413 else
1414 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1415 }
1416 else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
1417 {
1418 best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor);
1419 }
1420 else
1421 {
1422 best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor);
1423 }
1424 // Split into "value" and "index" values
1425 *value = (unsigned short)(encoded_divisor & 0xFFFF);
1426 if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H)
1427 {
1428 *index = (unsigned short)(encoded_divisor >> 8);
1429 *index &= 0xFF00;
1430 *index |= ftdi->index;
1431 }
1432 else
1433 *index = (unsigned short)(encoded_divisor >> 16);
1434
1435 // Return the nearest baud rate
1436 return best_baud;
1437}
1438
1439/**
1440 * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test
1441 * Do not use, it's only for the unit test framework
1442 **/
1443int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
1444 unsigned short *value, unsigned short *index)
1445{
1446 return ftdi_convert_baudrate(baudrate, ftdi, value, index);
1447}
1448
1449/**
1450 Sets the chip baud rate
1451
1452 \param ftdi pointer to ftdi_context
1453 \param baudrate baud rate to set
1454
1455 \retval 0: all fine
1456 \retval -1: invalid baudrate
1457 \retval -2: setting baudrate failed
1458 \retval -3: USB device unavailable
1459*/
1460int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate)
1461{
1462 unsigned short value, index;
1463 int actual_baudrate;
1464
1465 if (ftdi == NULL || ftdi->usb_dev == NULL)
1466 ftdi_error_return(-3, "USB device unavailable");
1467
1468 if (ftdi->bitbang_enabled)
1469 {
1470 baudrate = baudrate*4;
1471 }
1472
1473 actual_baudrate = ftdi_convert_baudrate(baudrate, ftdi, &value, &index);
1474 if (actual_baudrate <= 0)
1475 ftdi_error_return (-1, "Silly baudrate <= 0.");
1476
1477 // Check within tolerance (about 5%)
1478 if ((actual_baudrate * 2 < baudrate /* Catch overflows */ )
1479 || ((actual_baudrate < baudrate)
1480 ? (actual_baudrate * 21 < baudrate * 20)
1481 : (baudrate * 21 < actual_baudrate * 20)))
1482 ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4");
1483
1484 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1485 SIO_SET_BAUDRATE_REQUEST, value,
1486 index, NULL, 0, ftdi->usb_write_timeout) < 0)
1487 ftdi_error_return (-2, "Setting new baudrate failed");
1488
1489 ftdi->baudrate = baudrate;
1490 return 0;
1491}
1492
1493/**
1494 Set (RS232) line characteristics.
1495 The break type can only be set via ftdi_set_line_property2()
1496 and defaults to "off".
1497
1498 \param ftdi pointer to ftdi_context
1499 \param bits Number of bits
1500 \param sbit Number of stop bits
1501 \param parity Parity mode
1502
1503 \retval 0: all fine
1504 \retval -1: Setting line property failed
1505*/
1506int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1507 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity)
1508{
1509 return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF);
1510}
1511
1512/**
1513 Set (RS232) line characteristics
1514
1515 \param ftdi pointer to ftdi_context
1516 \param bits Number of bits
1517 \param sbit Number of stop bits
1518 \param parity Parity mode
1519 \param break_type Break type
1520
1521 \retval 0: all fine
1522 \retval -1: Setting line property failed
1523 \retval -2: USB device unavailable
1524*/
1525int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits,
1526 enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity,
1527 enum ftdi_break_type break_type)
1528{
1529 unsigned short value = bits;
1530
1531 if (ftdi == NULL || ftdi->usb_dev == NULL)
1532 ftdi_error_return(-2, "USB device unavailable");
1533
1534 switch (parity)
1535 {
1536 case NONE:
1537 value |= (0x00 << 8);
1538 break;
1539 case ODD:
1540 value |= (0x01 << 8);
1541 break;
1542 case EVEN:
1543 value |= (0x02 << 8);
1544 break;
1545 case MARK:
1546 value |= (0x03 << 8);
1547 break;
1548 case SPACE:
1549 value |= (0x04 << 8);
1550 break;
1551 }
1552
1553 switch (sbit)
1554 {
1555 case STOP_BIT_1:
1556 value |= (0x00 << 11);
1557 break;
1558 case STOP_BIT_15:
1559 value |= (0x01 << 11);
1560 break;
1561 case STOP_BIT_2:
1562 value |= (0x02 << 11);
1563 break;
1564 }
1565
1566 switch (break_type)
1567 {
1568 case BREAK_OFF:
1569 value |= (0x00 << 14);
1570 break;
1571 case BREAK_ON:
1572 value |= (0x01 << 14);
1573 break;
1574 }
1575
1576 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
1577 SIO_SET_DATA_REQUEST, value,
1578 ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
1579 ftdi_error_return (-1, "Setting new line property failed");
1580
1581 return 0;
1582}
1583
1584/**
1585 Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip
1586
1587 \param ftdi pointer to ftdi_context
1588 \param buf Buffer with the data
1589 \param size Size of the buffer
1590
1591 \retval -666: USB device unavailable
1592 \retval <0: error code from usb_bulk_write()
1593 \retval >0: number of bytes written
1594*/
1595int ftdi_write_data(struct ftdi_context *ftdi, const unsigned char *buf, int size)
1596{
1597 int offset = 0;
1598 int actual_length;
1599
1600 if (ftdi == NULL || ftdi->usb_dev == NULL)
1601 ftdi_error_return(-666, "USB device unavailable");
1602
1603 while (offset < size)
1604 {
1605 int write_size = ftdi->writebuffer_chunksize;
1606
1607 if (offset+write_size > size)
1608 write_size = size-offset;
1609
1610 if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, (unsigned char *)buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0)
1611 ftdi_error_return(-1, "usb bulk write failed");
1612
1613 offset += actual_length;
1614 }
1615
1616 return offset;
1617}
1618
1619static void LIBUSB_CALL ftdi_read_data_cb(struct libusb_transfer *transfer)
1620{
1621 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1622 struct ftdi_context *ftdi = tc->ftdi;
1623 int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret;
1624
1625 packet_size = ftdi->max_packet_size;
1626
1627 actual_length = transfer->actual_length;
1628
1629 if (actual_length > 2)
1630 {
1631 // skip FTDI status bytes.
1632 // Maybe stored in the future to enable modem use
1633 num_of_chunks = actual_length / packet_size;
1634 chunk_remains = actual_length % packet_size;
1635 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
1636
1637 ftdi->readbuffer_offset += 2;
1638 actual_length -= 2;
1639
1640 if (actual_length > packet_size - 2)
1641 {
1642 for (i = 1; i < num_of_chunks; i++)
1643 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1644 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1645 packet_size - 2);
1646 if (chunk_remains > 2)
1647 {
1648 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
1649 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
1650 chunk_remains-2);
1651 actual_length -= 2*num_of_chunks;
1652 }
1653 else
1654 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
1655 }
1656
1657 if (actual_length > 0)
1658 {
1659 // data still fits in buf?
1660 if (tc->offset + actual_length <= tc->size)
1661 {
1662 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length);
1663 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
1664 tc->offset += actual_length;
1665
1666 ftdi->readbuffer_offset = 0;
1667 ftdi->readbuffer_remaining = 0;
1668
1669 /* Did we read exactly the right amount of bytes? */
1670 if (tc->offset == tc->size)
1671 {
1672 //printf("read_data exact rem %d offset %d\n",
1673 //ftdi->readbuffer_remaining, offset);
1674 tc->completed = 1;
1675 return;
1676 }
1677 }
1678 else
1679 {
1680 // only copy part of the data or size <= readbuffer_chunksize
1681 int part_size = tc->size - tc->offset;
1682 memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size);
1683 tc->offset += part_size;
1684
1685 ftdi->readbuffer_offset += part_size;
1686 ftdi->readbuffer_remaining = actual_length - part_size;
1687
1688 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
1689 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
1690 tc->completed = 1;
1691 return;
1692 }
1693 }
1694 }
1695
1696 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1697 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1698 else
1699 {
1700 ret = libusb_submit_transfer (transfer);
1701 if (ret < 0)
1702 tc->completed = 1;
1703 }
1704}
1705
1706
1707static void LIBUSB_CALL ftdi_write_data_cb(struct libusb_transfer *transfer)
1708{
1709 struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data;
1710 struct ftdi_context *ftdi = tc->ftdi;
1711
1712 tc->offset += transfer->actual_length;
1713
1714 if (tc->offset == tc->size)
1715 {
1716 tc->completed = 1;
1717 }
1718 else
1719 {
1720 int write_size = ftdi->writebuffer_chunksize;
1721 int ret;
1722
1723 if (tc->offset + write_size > tc->size)
1724 write_size = tc->size - tc->offset;
1725
1726 transfer->length = write_size;
1727 transfer->buffer = tc->buf + tc->offset;
1728
1729 if (transfer->status == LIBUSB_TRANSFER_CANCELLED)
1730 tc->completed = LIBUSB_TRANSFER_CANCELLED;
1731 else
1732 {
1733 ret = libusb_submit_transfer (transfer);
1734 if (ret < 0)
1735 tc->completed = 1;
1736 }
1737 }
1738}
1739
1740
1741/**
1742 Writes data to the chip. Does not wait for completion of the transfer
1743 nor does it make sure that the transfer was successful.
1744
1745 Use libusb 1.0 asynchronous API.
1746
1747 \param ftdi pointer to ftdi_context
1748 \param buf Buffer with the data
1749 \param size Size of the buffer
1750
1751 \retval NULL: Some error happens when submit transfer
1752 \retval !NULL: Pointer to a ftdi_transfer_control
1753*/
1754
1755struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1756{
1757 struct ftdi_transfer_control *tc;
1758 struct libusb_transfer *transfer;
1759 int write_size, ret;
1760
1761 if (ftdi == NULL || ftdi->usb_dev == NULL)
1762 return NULL;
1763
1764 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1765 if (!tc)
1766 return NULL;
1767
1768 transfer = libusb_alloc_transfer(0);
1769 if (!transfer)
1770 {
1771 free(tc);
1772 return NULL;
1773 }
1774
1775 tc->ftdi = ftdi;
1776 tc->completed = 0;
1777 tc->buf = buf;
1778 tc->size = size;
1779 tc->offset = 0;
1780
1781 if (size < (int)ftdi->writebuffer_chunksize)
1782 write_size = size;
1783 else
1784 write_size = ftdi->writebuffer_chunksize;
1785
1786 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf,
1787 write_size, ftdi_write_data_cb, tc,
1788 ftdi->usb_write_timeout);
1789 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1790
1791 ret = libusb_submit_transfer(transfer);
1792 if (ret < 0)
1793 {
1794 libusb_free_transfer(transfer);
1795 free(tc);
1796 return NULL;
1797 }
1798 tc->transfer = transfer;
1799
1800 return tc;
1801}
1802
1803/**
1804 Reads data from the chip. Does not wait for completion of the transfer
1805 nor does it make sure that the transfer was successful.
1806
1807 Use libusb 1.0 asynchronous API.
1808
1809 \param ftdi pointer to ftdi_context
1810 \param buf Buffer with the data
1811 \param size Size of the buffer
1812
1813 \retval NULL: Some error happens when submit transfer
1814 \retval !NULL: Pointer to a ftdi_transfer_control
1815*/
1816
1817struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size)
1818{
1819 struct ftdi_transfer_control *tc;
1820 struct libusb_transfer *transfer;
1821 int ret;
1822
1823 if (ftdi == NULL || ftdi->usb_dev == NULL)
1824 return NULL;
1825
1826 tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc));
1827 if (!tc)
1828 return NULL;
1829
1830 tc->ftdi = ftdi;
1831 tc->buf = buf;
1832 tc->size = size;
1833
1834 if (size <= (int)ftdi->readbuffer_remaining)
1835 {
1836 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
1837
1838 // Fix offsets
1839 ftdi->readbuffer_remaining -= size;
1840 ftdi->readbuffer_offset += size;
1841
1842 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
1843
1844 tc->completed = 1;
1845 tc->offset = size;
1846 tc->transfer = NULL;
1847 return tc;
1848 }
1849
1850 tc->completed = 0;
1851 if (ftdi->readbuffer_remaining != 0)
1852 {
1853 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
1854
1855 tc->offset = ftdi->readbuffer_remaining;
1856 }
1857 else
1858 tc->offset = 0;
1859
1860 transfer = libusb_alloc_transfer(0);
1861 if (!transfer)
1862 {
1863 free (tc);
1864 return NULL;
1865 }
1866
1867 ftdi->readbuffer_remaining = 0;
1868 ftdi->readbuffer_offset = 0;
1869
1870 libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout);
1871 transfer->type = LIBUSB_TRANSFER_TYPE_BULK;
1872
1873 ret = libusb_submit_transfer(transfer);
1874 if (ret < 0)
1875 {
1876 libusb_free_transfer(transfer);
1877 free (tc);
1878 return NULL;
1879 }
1880 tc->transfer = transfer;
1881
1882 return tc;
1883}
1884
1885/**
1886 Wait for completion of the transfer.
1887
1888 Use libusb 1.0 asynchronous API.
1889
1890 \param tc pointer to ftdi_transfer_control
1891
1892 \retval < 0: Some error happens
1893 \retval >= 0: Data size transferred
1894*/
1895
1896int ftdi_transfer_data_done(struct ftdi_transfer_control *tc)
1897{
1898 int ret;
1899 struct timeval to = { 0, 0 };
1900 while (!tc->completed)
1901 {
1902 ret = libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1903 &to, &tc->completed);
1904 if (ret < 0)
1905 {
1906 if (ret == LIBUSB_ERROR_INTERRUPTED)
1907 continue;
1908 libusb_cancel_transfer(tc->transfer);
1909 while (!tc->completed)
1910 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx,
1911 &to, &tc->completed) < 0)
1912 break;
1913 libusb_free_transfer(tc->transfer);
1914 free (tc);
1915 return ret;
1916 }
1917 }
1918
1919 ret = tc->offset;
1920 /**
1921 * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)"
1922 * at ftdi_read_data_submit(). Therefore, we need to check it here.
1923 **/
1924 if (tc->transfer)
1925 {
1926 if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED)
1927 ret = -1;
1928 libusb_free_transfer(tc->transfer);
1929 }
1930 free(tc);
1931 return ret;
1932}
1933
1934/**
1935 Cancel transfer and wait for completion.
1936
1937 Use libusb 1.0 asynchronous API.
1938
1939 \param tc pointer to ftdi_transfer_control
1940 \param to pointer to timeout value or NULL for infinite
1941*/
1942
1943void ftdi_transfer_data_cancel(struct ftdi_transfer_control *tc,
1944 struct timeval * to)
1945{
1946 struct timeval tv = { 0, 0 };
1947
1948 if (!tc->completed && tc->transfer != NULL)
1949 {
1950 if (to == NULL)
1951 to = &tv;
1952
1953 libusb_cancel_transfer(tc->transfer);
1954 while (!tc->completed)
1955 {
1956 if (libusb_handle_events_timeout_completed(tc->ftdi->usb_ctx, to, &tc->completed) < 0)
1957 break;
1958 }
1959 }
1960
1961 if (tc->transfer)
1962 libusb_free_transfer(tc->transfer);
1963
1964 free (tc);
1965}
1966
1967/**
1968 Configure write buffer chunk size.
1969 Default is 4096.
1970
1971 \param ftdi pointer to ftdi_context
1972 \param chunksize Chunk size
1973
1974 \retval 0: all fine
1975 \retval -1: ftdi context invalid
1976*/
1977int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
1978{
1979 if (ftdi == NULL)
1980 ftdi_error_return(-1, "ftdi context invalid");
1981
1982 ftdi->writebuffer_chunksize = chunksize;
1983 return 0;
1984}
1985
1986/**
1987 Get write buffer chunk size.
1988
1989 \param ftdi pointer to ftdi_context
1990 \param chunksize Pointer to store chunk size in
1991
1992 \retval 0: all fine
1993 \retval -1: ftdi context invalid
1994*/
1995int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
1996{
1997 if (ftdi == NULL)
1998 ftdi_error_return(-1, "ftdi context invalid");
1999
2000 *chunksize = ftdi->writebuffer_chunksize;
2001 return 0;
2002}
2003
2004/**
2005 Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip.
2006
2007 Automatically strips the two modem status bytes transferred during every read.
2008
2009 \param ftdi pointer to ftdi_context
2010 \param buf Buffer to store data in
2011 \param size Size of the buffer
2012
2013 \retval -666: USB device unavailable
2014 \retval <0: error code from libusb_bulk_transfer()
2015 \retval 0: no data was available
2016 \retval >0: number of bytes read
2017
2018*/
2019int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size)
2020{
2021 int offset = 0, ret, i, num_of_chunks, chunk_remains;
2022 int packet_size;
2023 int actual_length = 1;
2024
2025 if (ftdi == NULL || ftdi->usb_dev == NULL)
2026 ftdi_error_return(-666, "USB device unavailable");
2027
2028 // Packet size sanity check (avoid division by zero)
2029 packet_size = ftdi->max_packet_size;
2030 if (packet_size == 0)
2031 ftdi_error_return(-1, "max_packet_size is bogus (zero)");
2032
2033 // everything we want is still in the readbuffer?
2034 if (size <= (int)ftdi->readbuffer_remaining)
2035 {
2036 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size);
2037
2038 // Fix offsets
2039 ftdi->readbuffer_remaining -= size;
2040 ftdi->readbuffer_offset += size;
2041
2042 /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */
2043
2044 return size;
2045 }
2046 // something still in the readbuffer, but not enough to satisfy 'size'?
2047 if (ftdi->readbuffer_remaining != 0)
2048 {
2049 memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining);
2050
2051 // Fix offset
2052 offset += ftdi->readbuffer_remaining;
2053 }
2054 // do the actual USB read
2055 while (offset < size && actual_length > 0)
2056 {
2057 ftdi->readbuffer_remaining = 0;
2058 ftdi->readbuffer_offset = 0;
2059 /* returns how much received */
2060 ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout);
2061 if (ret < 0)
2062 ftdi_error_return(ret, "usb bulk read failed");
2063
2064 if (actual_length > 2)
2065 {
2066 // skip FTDI status bytes.
2067 // Maybe stored in the future to enable modem use
2068 num_of_chunks = actual_length / packet_size;
2069 chunk_remains = actual_length % packet_size;
2070 //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset);
2071
2072 ftdi->readbuffer_offset += 2;
2073 actual_length -= 2;
2074
2075 if (actual_length > packet_size - 2)
2076 {
2077 for (i = 1; i < num_of_chunks; i++)
2078 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2079 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
2080 packet_size - 2);
2081 if (chunk_remains > 2)
2082 {
2083 memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i,
2084 ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i,
2085 chunk_remains-2);
2086 actual_length -= 2*num_of_chunks;
2087 }
2088 else
2089 actual_length -= 2*(num_of_chunks-1)+chunk_remains;
2090 }
2091 }
2092 else if (actual_length <= 2)
2093 {
2094 // no more data to read?
2095 return offset;
2096 }
2097 if (actual_length > 0)
2098 {
2099 // data still fits in buf?
2100 if (offset+actual_length <= size)
2101 {
2102 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length);
2103 //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]);
2104 offset += actual_length;
2105
2106 /* Did we read exactly the right amount of bytes? */
2107 if (offset == size)
2108 //printf("read_data exact rem %d offset %d\n",
2109 //ftdi->readbuffer_remaining, offset);
2110 return offset;
2111 }
2112 else
2113 {
2114 // only copy part of the data or size <= readbuffer_chunksize
2115 int part_size = size-offset;
2116 memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size);
2117
2118 ftdi->readbuffer_offset += part_size;
2119 ftdi->readbuffer_remaining = actual_length-part_size;
2120 offset += part_size;
2121
2122 /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n",
2123 part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */
2124
2125 return offset;
2126 }
2127 }
2128 }
2129 // never reached
2130 return -127;
2131}
2132
2133/**
2134 Configure read buffer chunk size.
2135 Default is 4096.
2136
2137 Automatically reallocates the buffer.
2138
2139 \param ftdi pointer to ftdi_context
2140 \param chunksize Chunk size
2141
2142 \retval 0: all fine
2143 \retval -1: ftdi context invalid
2144*/
2145int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize)
2146{
2147 unsigned char *new_buf;
2148
2149 if (ftdi == NULL)
2150 ftdi_error_return(-1, "ftdi context invalid");
2151
2152 // Invalidate all remaining data
2153 ftdi->readbuffer_offset = 0;
2154 ftdi->readbuffer_remaining = 0;
2155#ifdef __linux__
2156 /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH,
2157 which is defined in libusb-1.0. Otherwise, each USB read request will
2158 be divided into multiple URBs. This will cause issues on Linux kernel
2159 older than 2.6.32. */
2160 if (chunksize > 16384)
2161 chunksize = 16384;
2162#endif
2163
2164 if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL)
2165 ftdi_error_return(-1, "out of memory for readbuffer");
2166
2167 ftdi->readbuffer = new_buf;
2168 ftdi->readbuffer_chunksize = chunksize;
2169
2170 return 0;
2171}
2172
2173/**
2174 Get read buffer chunk size.
2175
2176 \param ftdi pointer to ftdi_context
2177 \param chunksize Pointer to store chunk size in
2178
2179 \retval 0: all fine
2180 \retval -1: FTDI context invalid
2181*/
2182int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize)
2183{
2184 if (ftdi == NULL)
2185 ftdi_error_return(-1, "FTDI context invalid");
2186
2187 *chunksize = ftdi->readbuffer_chunksize;
2188 return 0;
2189}
2190
2191/**
2192 Enable/disable bitbang modes.
2193
2194 \param ftdi pointer to ftdi_context
2195 \param bitmask Bitmask to configure lines.
2196 HIGH/ON value configures a line as output.
2197 \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode
2198
2199 \retval 0: all fine
2200 \retval -1: can't enable bitbang mode
2201 \retval -2: USB device unavailable
2202*/
2203int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode)
2204{
2205 unsigned short usb_val;
2206
2207 if (ftdi == NULL || ftdi->usb_dev == NULL)
2208 ftdi_error_return(-2, "USB device unavailable");
2209
2210 usb_val = bitmask; // low byte: bitmask
2211 usb_val |= (mode << 8);
2212 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2213 ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a BM/2232C type chip?");
2214
2215 ftdi->bitbang_mode = mode;
2216 ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1;
2217 return 0;
2218}
2219
2220/**
2221 Set module detach mode.
2222
2223 \param ftdi pointer to ftdi_context
2224 \param mode detach mode to use.
2225
2226 \retval 0: all fine
2227 \retval -1: can't enable bitbang mode
2228*/
2229int ftdi_set_module_detach_mode(struct ftdi_context *ftdi, enum ftdi_module_detach_mode mode)
2230{
2231 if (ftdi == NULL)
2232 ftdi_error_return(-1, "FTDI context invalid");
2233
2234 ftdi->module_detach_mode = mode;
2235 return 0;
2236}
2237
2238/**
2239 Disable bitbang mode.
2240
2241 \param ftdi pointer to ftdi_context
2242
2243 \retval 0: all fine
2244 \retval -1: can't disable bitbang mode
2245 \retval -2: USB device unavailable
2246*/
2247int ftdi_disable_bitbang(struct ftdi_context *ftdi)
2248{
2249 if (ftdi == NULL || ftdi->usb_dev == NULL)
2250 ftdi_error_return(-2, "USB device unavailable");
2251
2252 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2253 ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?");
2254
2255 ftdi->bitbang_enabled = 0;
2256 return 0;
2257}
2258
2259
2260/**
2261 Directly read pin state, circumventing the read buffer. Useful for bitbang mode.
2262
2263 \param ftdi pointer to ftdi_context
2264 \param pins Pointer to store pins into
2265
2266 \retval 0: all fine
2267 \retval -1: read pins failed
2268 \retval -2: USB device unavailable
2269*/
2270int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins)
2271{
2272 if (ftdi == NULL || ftdi->usb_dev == NULL)
2273 ftdi_error_return(-2, "USB device unavailable");
2274
2275 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1)
2276 ftdi_error_return(-1, "read pins failed");
2277
2278 return 0;
2279}
2280
2281/**
2282 Set latency timer
2283
2284 The FTDI chip keeps data in the internal buffer for a specific
2285 amount of time if the buffer is not full yet to decrease
2286 load on the usb bus.
2287
2288 \param ftdi pointer to ftdi_context
2289 \param latency Value between 1 and 255
2290
2291 \retval 0: all fine
2292 \retval -1: latency out of range
2293 \retval -2: unable to set latency timer
2294 \retval -3: USB device unavailable
2295*/
2296int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency)
2297{
2298 unsigned short usb_val;
2299
2300 if (latency < 1)
2301 ftdi_error_return(-1, "latency out of range. Only valid for 1-255");
2302
2303 if (ftdi == NULL || ftdi->usb_dev == NULL)
2304 ftdi_error_return(-3, "USB device unavailable");
2305
2306 usb_val = latency;
2307 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2308 ftdi_error_return(-2, "unable to set latency timer");
2309
2310 return 0;
2311}
2312
2313/**
2314 Get latency timer
2315
2316 \param ftdi pointer to ftdi_context
2317 \param latency Pointer to store latency value in
2318
2319 \retval 0: all fine
2320 \retval -1: unable to get latency timer
2321 \retval -2: USB device unavailable
2322*/
2323int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency)
2324{
2325 unsigned short usb_val;
2326
2327 if (ftdi == NULL || ftdi->usb_dev == NULL)
2328 ftdi_error_return(-2, "USB device unavailable");
2329
2330 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1)
2331 ftdi_error_return(-1, "reading latency timer failed");
2332
2333 *latency = (unsigned char)usb_val;
2334 return 0;
2335}
2336
2337/**
2338 Poll modem status information
2339
2340 This function allows the retrieve the two status bytes of the device.
2341 The device sends these bytes also as a header for each read access
2342 where they are discarded by ftdi_read_data(). The chip generates
2343 the two stripped status bytes in the absence of data every 40 ms.
2344
2345 Layout of the first byte:
2346 - B0..B3 - must be 0
2347 - B4 Clear to send (CTS)
2348 0 = inactive
2349 1 = active
2350 - B5 Data set ready (DTS)
2351 0 = inactive
2352 1 = active
2353 - B6 Ring indicator (RI)
2354 0 = inactive
2355 1 = active
2356 - B7 Receive line signal detect (RLSD)
2357 0 = inactive
2358 1 = active
2359
2360 Layout of the second byte:
2361 - B0 Data ready (DR)
2362 - B1 Overrun error (OE)
2363 - B2 Parity error (PE)
2364 - B3 Framing error (FE)
2365 - B4 Break interrupt (BI)
2366 - B5 Transmitter holding register (THRE)
2367 - B6 Transmitter empty (TEMT)
2368 - B7 Error in RCVR FIFO
2369
2370 \param ftdi pointer to ftdi_context
2371 \param status Pointer to store status information in. Must be two bytes.
2372
2373 \retval 0: all fine
2374 \retval -1: unable to retrieve status information
2375 \retval -2: USB device unavailable
2376*/
2377int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status)
2378{
2379 char usb_val[2];
2380
2381 if (ftdi == NULL || ftdi->usb_dev == NULL)
2382 ftdi_error_return(-2, "USB device unavailable");
2383
2384 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2)
2385 ftdi_error_return(-1, "getting modem status failed");
2386
2387 *status = (usb_val[1] << 8) | (usb_val[0] & 0xFF);
2388
2389 return 0;
2390}
2391
2392/**
2393 Set flowcontrol for ftdi chip
2394
2395 Note: Do not use this function to enable XON/XOFF mode, use ftdi_setflowctrl_xonxoff() instead.
2396
2397 \param ftdi pointer to ftdi_context
2398 \param flowctrl flow control to use. should be
2399 SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS
2400
2401 \retval 0: all fine
2402 \retval -1: set flow control failed
2403 \retval -2: USB device unavailable
2404*/
2405int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl)
2406{
2407 if (ftdi == NULL || ftdi->usb_dev == NULL)
2408 ftdi_error_return(-2, "USB device unavailable");
2409
2410 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2411 SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index),
2412 NULL, 0, ftdi->usb_write_timeout) < 0)
2413 ftdi_error_return(-1, "set flow control failed");
2414
2415 return 0;
2416}
2417
2418/**
2419 Set XON/XOFF flowcontrol for ftdi chip
2420
2421 \param ftdi pointer to ftdi_context
2422 \param xon character code used to resume transmission
2423 \param xoff character code used to pause transmission
2424
2425 \retval 0: all fine
2426 \retval -1: set flow control failed
2427 \retval -2: USB device unavailable
2428*/
2429int ftdi_setflowctrl_xonxoff(struct ftdi_context *ftdi, unsigned char xon, unsigned char xoff)
2430{
2431 if (ftdi == NULL || ftdi->usb_dev == NULL)
2432 ftdi_error_return(-2, "USB device unavailable");
2433
2434 uint16_t xonxoff = xon | (xoff << 8);
2435 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2436 SIO_SET_FLOW_CTRL_REQUEST, xonxoff, (SIO_XON_XOFF_HS | ftdi->index),
2437 NULL, 0, ftdi->usb_write_timeout) < 0)
2438 ftdi_error_return(-1, "set flow control failed");
2439
2440 return 0;
2441}
2442
2443/**
2444 Set dtr line
2445
2446 \param ftdi pointer to ftdi_context
2447 \param state state to set line to (1 or 0)
2448
2449 \retval 0: all fine
2450 \retval -1: set dtr failed
2451 \retval -2: USB device unavailable
2452*/
2453int ftdi_setdtr(struct ftdi_context *ftdi, int state)
2454{
2455 unsigned short usb_val;
2456
2457 if (ftdi == NULL || ftdi->usb_dev == NULL)
2458 ftdi_error_return(-2, "USB device unavailable");
2459
2460 if (state)
2461 usb_val = SIO_SET_DTR_HIGH;
2462 else
2463 usb_val = SIO_SET_DTR_LOW;
2464
2465 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2466 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2467 NULL, 0, ftdi->usb_write_timeout) < 0)
2468 ftdi_error_return(-1, "set dtr failed");
2469
2470 return 0;
2471}
2472
2473/**
2474 Set rts line
2475
2476 \param ftdi pointer to ftdi_context
2477 \param state state to set line to (1 or 0)
2478
2479 \retval 0: all fine
2480 \retval -1: set rts failed
2481 \retval -2: USB device unavailable
2482*/
2483int ftdi_setrts(struct ftdi_context *ftdi, int state)
2484{
2485 unsigned short usb_val;
2486
2487 if (ftdi == NULL || ftdi->usb_dev == NULL)
2488 ftdi_error_return(-2, "USB device unavailable");
2489
2490 if (state)
2491 usb_val = SIO_SET_RTS_HIGH;
2492 else
2493 usb_val = SIO_SET_RTS_LOW;
2494
2495 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2496 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2497 NULL, 0, ftdi->usb_write_timeout) < 0)
2498 ftdi_error_return(-1, "set of rts failed");
2499
2500 return 0;
2501}
2502
2503/**
2504 Set dtr and rts line in one pass
2505
2506 \param ftdi pointer to ftdi_context
2507 \param dtr DTR state to set line to (1 or 0)
2508 \param rts RTS state to set line to (1 or 0)
2509
2510 \retval 0: all fine
2511 \retval -1: set dtr/rts failed
2512 \retval -2: USB device unavailable
2513 */
2514int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts)
2515{
2516 unsigned short usb_val;
2517
2518 if (ftdi == NULL || ftdi->usb_dev == NULL)
2519 ftdi_error_return(-2, "USB device unavailable");
2520
2521 if (dtr)
2522 usb_val = SIO_SET_DTR_HIGH;
2523 else
2524 usb_val = SIO_SET_DTR_LOW;
2525
2526 if (rts)
2527 usb_val |= SIO_SET_RTS_HIGH;
2528 else
2529 usb_val |= SIO_SET_RTS_LOW;
2530
2531 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
2532 SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index,
2533 NULL, 0, ftdi->usb_write_timeout) < 0)
2534 ftdi_error_return(-1, "set of rts/dtr failed");
2535
2536 return 0;
2537}
2538
2539/**
2540 Set the special event character
2541
2542 \param ftdi pointer to ftdi_context
2543 \param eventch Event character
2544 \param enable 0 to disable the event character, non-zero otherwise
2545
2546 \retval 0: all fine
2547 \retval -1: unable to set event character
2548 \retval -2: USB device unavailable
2549*/
2550int ftdi_set_event_char(struct ftdi_context *ftdi,
2551 unsigned char eventch, unsigned char enable)
2552{
2553 unsigned short usb_val;
2554
2555 if (ftdi == NULL || ftdi->usb_dev == NULL)
2556 ftdi_error_return(-2, "USB device unavailable");
2557
2558 usb_val = eventch;
2559 if (enable)
2560 usb_val |= 1 << 8;
2561
2562 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2563 ftdi_error_return(-1, "setting event character failed");
2564
2565 return 0;
2566}
2567
2568/**
2569 Set error character
2570
2571 \param ftdi pointer to ftdi_context
2572 \param errorch Error character
2573 \param enable 0 to disable the error character, non-zero otherwise
2574
2575 \retval 0: all fine
2576 \retval -1: unable to set error character
2577 \retval -2: USB device unavailable
2578*/
2579int ftdi_set_error_char(struct ftdi_context *ftdi,
2580 unsigned char errorch, unsigned char enable)
2581{
2582 unsigned short usb_val;
2583
2584 if (ftdi == NULL || ftdi->usb_dev == NULL)
2585 ftdi_error_return(-2, "USB device unavailable");
2586
2587 usb_val = errorch;
2588 if (enable)
2589 usb_val |= 1 << 8;
2590
2591 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0)
2592 ftdi_error_return(-1, "setting error character failed");
2593
2594 return 0;
2595}
2596
2597/**
2598 Init eeprom with default values for the connected device
2599 \param ftdi pointer to ftdi_context
2600 \param manufacturer String to use as Manufacturer
2601 \param product String to use as Product description
2602 \param serial String to use as Serial number description
2603
2604 \retval 0: all fine
2605 \retval -1: No struct ftdi_context
2606 \retval -2: No struct ftdi_eeprom
2607 \retval -3: No connected device or device not yet opened
2608*/
2609int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, const char * manufacturer,
2610 const char * product, const char * serial)
2611{
2612 struct ftdi_eeprom *eeprom;
2613
2614 if (ftdi == NULL)
2615 ftdi_error_return(-1, "No struct ftdi_context");
2616
2617 if (ftdi->eeprom == NULL)
2618 ftdi_error_return(-2,"No struct ftdi_eeprom");
2619
2620 eeprom = ftdi->eeprom;
2621 memset(eeprom, 0, sizeof(struct ftdi_eeprom));
2622
2623 if (ftdi->usb_dev == NULL)
2624 ftdi_error_return(-3, "No connected device or device not yet opened");
2625
2626 eeprom->vendor_id = 0x0403;
2627 eeprom->use_serial = (serial != NULL);
2628 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) ||
2629 (ftdi->type == TYPE_R))
2630 eeprom->product_id = 0x6001;
2631 else if (ftdi->type == TYPE_4232H)
2632 eeprom->product_id = 0x6011;
2633 else if (ftdi->type == TYPE_232H)
2634 eeprom->product_id = 0x6014;
2635 else if (ftdi->type == TYPE_230X)
2636 eeprom->product_id = 0x6015;
2637 else
2638 eeprom->product_id = 0x6010;
2639
2640 if (ftdi->type == TYPE_AM)
2641 eeprom->usb_version = 0x0101;
2642 else
2643 eeprom->usb_version = 0x0200;
2644 eeprom->max_power = 100;
2645
2646 if (eeprom->manufacturer)
2647 free (eeprom->manufacturer);
2648 eeprom->manufacturer = NULL;
2649 if (manufacturer)
2650 {
2651 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2652 if (eeprom->manufacturer)
2653 strcpy(eeprom->manufacturer, manufacturer);
2654 }
2655
2656 if (eeprom->product)
2657 free (eeprom->product);
2658 eeprom->product = NULL;
2659 if(product)
2660 {
2661 eeprom->product = (char *)malloc(strlen(product)+1);
2662 if (eeprom->product)
2663 strcpy(eeprom->product, product);
2664 }
2665 else
2666 {
2667 const char* default_product;
2668 switch(ftdi->type)
2669 {
2670 case TYPE_AM: default_product = "AM"; break;
2671 case TYPE_BM: default_product = "BM"; break;
2672 case TYPE_2232C: default_product = "Dual RS232"; break;
2673 case TYPE_R: default_product = "FT232R USB UART"; break;
2674 case TYPE_2232H: default_product = "Dual RS232-HS"; break;
2675 case TYPE_4232H: default_product = "FT4232H"; break;
2676 case TYPE_232H: default_product = "Single-RS232-HS"; break;
2677 case TYPE_230X: default_product = "FT230X Basic UART"; break;
2678 default:
2679 ftdi_error_return(-3, "Unknown chip type");
2680 }
2681 eeprom->product = (char *)malloc(strlen(default_product) +1);
2682 if (eeprom->product)
2683 strcpy(eeprom->product, default_product);
2684 }
2685
2686 if (eeprom->serial)
2687 free (eeprom->serial);
2688 eeprom->serial = NULL;
2689 if (serial)
2690 {
2691 eeprom->serial = (char *)malloc(strlen(serial)+1);
2692 if (eeprom->serial)
2693 strcpy(eeprom->serial, serial);
2694 }
2695
2696 if (ftdi->type == TYPE_R)
2697 {
2698 eeprom->max_power = 90;
2699 eeprom->size = 0x80;
2700 eeprom->cbus_function[0] = CBUS_TXLED;
2701 eeprom->cbus_function[1] = CBUS_RXLED;
2702 eeprom->cbus_function[2] = CBUS_TXDEN;
2703 eeprom->cbus_function[3] = CBUS_PWREN;
2704 eeprom->cbus_function[4] = CBUS_SLEEP;
2705 }
2706 else if (ftdi->type == TYPE_230X)
2707 {
2708 eeprom->max_power = 90;
2709 eeprom->size = 0x100;
2710 eeprom->cbus_function[0] = CBUSX_TXDEN;
2711 eeprom->cbus_function[1] = CBUSX_RXLED;
2712 eeprom->cbus_function[2] = CBUSX_TXLED;
2713 eeprom->cbus_function[3] = CBUSX_SLEEP;
2714 }
2715 else
2716 {
2717 if(ftdi->type == TYPE_232H)
2718 {
2719 int i;
2720 for (i=0; i<10; i++)
2721 eeprom->cbus_function[i] = CBUSH_TRISTATE;
2722 }
2723 eeprom->size = -1;
2724 }
2725 switch (ftdi->type)
2726 {
2727 case TYPE_AM:
2728 eeprom->release_number = 0x0200;
2729 break;
2730 case TYPE_BM:
2731 eeprom->release_number = 0x0400;
2732 break;
2733 case TYPE_2232C:
2734 eeprom->release_number = 0x0500;
2735 break;
2736 case TYPE_R:
2737 eeprom->release_number = 0x0600;
2738 break;
2739 case TYPE_2232H:
2740 eeprom->release_number = 0x0700;
2741 break;
2742 case TYPE_4232H:
2743 eeprom->release_number = 0x0800;
2744 break;
2745 case TYPE_232H:
2746 eeprom->release_number = 0x0900;
2747 break;
2748 case TYPE_230X:
2749 eeprom->release_number = 0x1000;
2750 break;
2751 default:
2752 eeprom->release_number = 0x00;
2753 }
2754 return 0;
2755}
2756
2757int ftdi_eeprom_set_strings(struct ftdi_context *ftdi, const char * manufacturer,
2758 const char * product, const char * serial)
2759{
2760 struct ftdi_eeprom *eeprom;
2761
2762 if (ftdi == NULL)
2763 ftdi_error_return(-1, "No struct ftdi_context");
2764
2765 if (ftdi->eeprom == NULL)
2766 ftdi_error_return(-2,"No struct ftdi_eeprom");
2767
2768 eeprom = ftdi->eeprom;
2769
2770 if (ftdi->usb_dev == NULL)
2771 ftdi_error_return(-3, "No connected device or device not yet opened");
2772
2773 if (manufacturer)
2774 {
2775 if (eeprom->manufacturer)
2776 free (eeprom->manufacturer);
2777 eeprom->manufacturer = (char *)malloc(strlen(manufacturer)+1);
2778 if (eeprom->manufacturer)
2779 strcpy(eeprom->manufacturer, manufacturer);
2780 }
2781
2782 if(product)
2783 {
2784 if (eeprom->product)
2785 free (eeprom->product);
2786 eeprom->product = (char *)malloc(strlen(product)+1);
2787 if (eeprom->product)
2788 strcpy(eeprom->product, product);
2789 }
2790
2791 if (serial)
2792 {
2793 if (eeprom->serial)
2794 free (eeprom->serial);
2795 eeprom->serial = (char *)malloc(strlen(serial)+1);
2796 if (eeprom->serial)
2797 {
2798 strcpy(eeprom->serial, serial);
2799 eeprom->use_serial = 1;
2800 }
2801 }
2802 return 0;
2803}
2804
2805/**
2806 Return device ID strings from the eeprom. Device needs to be connected.
2807
2808 The parameters manufacturer, description and serial may be NULL
2809 or pointer to buffers to store the fetched strings.
2810
2811 \param ftdi pointer to ftdi_context
2812 \param manufacturer Store manufacturer string here if not NULL
2813 \param mnf_len Buffer size of manufacturer string
2814 \param product Store product description string here if not NULL
2815 \param prod_len Buffer size of product description string
2816 \param serial Store serial string here if not NULL
2817 \param serial_len Buffer size of serial string
2818
2819 \retval 0: all fine
2820 \retval -1: ftdi context invalid
2821 \retval -2: ftdi eeprom buffer invalid
2822*/
2823int ftdi_eeprom_get_strings(struct ftdi_context *ftdi,
2824 char *manufacturer, int mnf_len,
2825 char *product, int prod_len,
2826 char *serial, int serial_len)
2827{
2828 struct ftdi_eeprom *eeprom;
2829
2830 if (ftdi == NULL)
2831 ftdi_error_return(-1, "No struct ftdi_context");
2832 if (ftdi->eeprom == NULL)
2833 ftdi_error_return(-2, "No struct ftdi_eeprom");
2834
2835 eeprom = ftdi->eeprom;
2836
2837 if (manufacturer)
2838 {
2839 strncpy(manufacturer, eeprom->manufacturer, mnf_len);
2840 if (mnf_len > 0)
2841 manufacturer[mnf_len - 1] = '\0';
2842 }
2843
2844 if (product)
2845 {
2846 strncpy(product, eeprom->product, prod_len);
2847 if (prod_len > 0)
2848 product[prod_len - 1] = '\0';
2849 }
2850
2851 if (serial)
2852 {
2853 strncpy(serial, eeprom->serial, serial_len);
2854 if (serial_len > 0)
2855 serial[serial_len - 1] = '\0';
2856 }
2857
2858 return 0;
2859}
2860
2861/*FTD2XX doesn't check for values not fitting in the ACBUS Signal options*/
2862void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output)
2863{
2864 int i;
2865 for(i=0; i<5; i++)
2866 {
2867 int mode_low, mode_high;
2868 if (eeprom->cbus_function[2*i]> CBUSH_CLK7_5)
2869 mode_low = CBUSH_TRISTATE;
2870 else
2871 mode_low = eeprom->cbus_function[2*i];
2872 if (eeprom->cbus_function[2*i+1]> CBUSH_CLK7_5)
2873 mode_high = CBUSH_TRISTATE;
2874 else
2875 mode_high = eeprom->cbus_function[2*i+1];
2876
2877 output[0x18+i] = (mode_high <<4) | mode_low;
2878 }
2879}
2880/* Return the bits for the encoded EEPROM Structure of a requested Mode
2881 *
2882 */
2883static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip)
2884{
2885 switch (chip)
2886 {
2887 case TYPE_2232H:
2888 case TYPE_2232C:
2889 {
2890 switch (type)
2891 {
2892 case CHANNEL_IS_UART: return 0;
2893 case CHANNEL_IS_FIFO: return 0x01;
2894 case CHANNEL_IS_OPTO: return 0x02;
2895 case CHANNEL_IS_CPU : return 0x04;
2896 default: return 0;
2897 }
2898 }
2899 case TYPE_232H:
2900 {
2901 switch (type)
2902 {
2903 case CHANNEL_IS_UART : return 0;
2904 case CHANNEL_IS_FIFO : return 0x01;
2905 case CHANNEL_IS_OPTO : return 0x02;
2906 case CHANNEL_IS_CPU : return 0x04;
2907 case CHANNEL_IS_FT1284 : return 0x08;
2908 default: return 0;
2909 }
2910 }
2911 case TYPE_R:
2912 {
2913 switch (type)
2914 {
2915 case CHANNEL_IS_UART : return 0;
2916 case CHANNEL_IS_FIFO : return 0x01;
2917 default: return 0;
2918 }
2919 }
2920 case TYPE_230X: /* FT230X is only UART */
2921 case TYPE_AM:
2922 case TYPE_BM:
2923 case TYPE_4232H:
2924 default: return 0;
2925 }
2926 /* fallback */
2927 return 0;
2928}
2929
2930/**
2931 Build binary buffer from ftdi_eeprom structure.
2932 Output is suitable for ftdi_write_eeprom().
2933
2934 \param ftdi pointer to ftdi_context
2935
2936 \retval >=0: size of eeprom user area in bytes
2937 \retval -1: eeprom size (128 bytes) exceeded by custom strings
2938 \retval -2: Invalid eeprom or ftdi pointer
2939 \retval -3: Invalid cbus function setting (FIXME: Not in the code?)
2940 \retval -4: Chip doesn't support invert (FIXME: Not in the code?)
2941 \retval -5: Chip doesn't support high current drive (FIXME: Not in the code?)
2942 \retval -6: No connected EEPROM or EEPROM Type unknown
2943*/
2944int ftdi_eeprom_build(struct ftdi_context *ftdi)
2945{
2946 unsigned char i, j, eeprom_size_mask;
2947 unsigned short checksum, value;
2948 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
2949 int user_area_size, free_start, free_end;
2950 struct ftdi_eeprom *eeprom;
2951 unsigned char * output;
2952
2953 if (ftdi == NULL)
2954 ftdi_error_return(-2,"No context");
2955 if (ftdi->eeprom == NULL)
2956 ftdi_error_return(-2,"No eeprom structure");
2957
2958 eeprom= ftdi->eeprom;
2959 output = eeprom->buf;
2960
2961 if (eeprom->chip == -1)
2962 ftdi_error_return(-6,"No connected EEPROM or EEPROM type unknown");
2963
2964 if (eeprom->size == -1)
2965 {
2966 if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66))
2967 eeprom->size = 0x100;
2968 else
2969 eeprom->size = 0x80;
2970 }
2971
2972 if (eeprom->manufacturer != NULL)
2973 manufacturer_size = strlen(eeprom->manufacturer);
2974 if (eeprom->product != NULL)
2975 product_size = strlen(eeprom->product);
2976 if (eeprom->serial != NULL)
2977 serial_size = strlen(eeprom->serial);
2978
2979 // eeprom size check
2980 switch (ftdi->type)
2981 {
2982 case TYPE_AM:
2983 case TYPE_BM:
2984 case TYPE_R:
2985 user_area_size = 96; // base size for strings (total of 48 characters)
2986 break;
2987 case TYPE_2232C:
2988 user_area_size = 90; // two extra config bytes and 4 bytes PnP stuff
2989 break;
2990 case TYPE_230X:
2991 user_area_size = 88; // four extra config bytes + 4 bytes PnP stuff
2992 break;
2993 case TYPE_2232H: // six extra config bytes + 4 bytes PnP stuff
2994 case TYPE_4232H:
2995 user_area_size = 86;
2996 break;
2997 case TYPE_232H:
2998 user_area_size = 80;
2999 break;
3000 default:
3001 user_area_size = 0;
3002 break;
3003 }
3004 user_area_size -= (manufacturer_size + product_size + serial_size) * 2;
3005
3006 if (user_area_size < 0)
3007 ftdi_error_return(-1,"eeprom size exceeded");
3008
3009 // empty eeprom
3010 if (ftdi->type == TYPE_230X)
3011 {
3012 /* FT230X have a reserved section in the middle of the MTP,
3013 which cannot be written to, but must be included in the checksum */
3014 memset(ftdi->eeprom->buf, 0, 0x80);
3015 memset((ftdi->eeprom->buf + 0xa0), 0, (FTDI_MAX_EEPROM_SIZE - 0xa0));
3016 }
3017 else
3018 {
3019 memset(ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE);
3020 }
3021
3022 // Bytes and Bits set for all Types
3023
3024 // Addr 02: Vendor ID
3025 output[0x02] = eeprom->vendor_id;
3026 output[0x03] = eeprom->vendor_id >> 8;
3027
3028 // Addr 04: Product ID
3029 output[0x04] = eeprom->product_id;
3030 output[0x05] = eeprom->product_id >> 8;
3031
3032 // Addr 06: Device release number (0400h for BM features)
3033 output[0x06] = eeprom->release_number;
3034 output[0x07] = eeprom->release_number >> 8;
3035
3036 // Addr 08: Config descriptor
3037 // Bit 7: always 1
3038 // Bit 6: 1 if this device is self powered, 0 if bus powered
3039 // Bit 5: 1 if this device uses remote wakeup
3040 // Bit 4-0: reserved - 0
3041 j = 0x80;
3042 if (eeprom->self_powered)
3043 j |= 0x40;
3044 if (eeprom->remote_wakeup)
3045 j |= 0x20;
3046 output[0x08] = j;
3047
3048 // Addr 09: Max power consumption: max power = value * 2 mA
3049 output[0x09] = eeprom->max_power / MAX_POWER_MILLIAMP_PER_UNIT;
3050
3051 if ((ftdi->type != TYPE_AM) && (ftdi->type != TYPE_230X))
3052 {
3053 // Addr 0A: Chip configuration
3054 // Bit 7: 0 - reserved
3055 // Bit 6: 0 - reserved
3056 // Bit 5: 0 - reserved
3057 // Bit 4: 1 - Change USB version
3058 // Bit 3: 1 - Use the serial number string
3059 // Bit 2: 1 - Enable suspend pull downs for lower power
3060 // Bit 1: 1 - Out EndPoint is Isochronous
3061 // Bit 0: 1 - In EndPoint is Isochronous
3062 //
3063 j = 0;
3064 if (eeprom->in_is_isochronous)
3065 j = j | 1;
3066 if (eeprom->out_is_isochronous)
3067 j = j | 2;
3068 output[0x0A] = j;
3069 }
3070
3071 // Dynamic content
3072 // Strings start at 0x94 (TYPE_AM, TYPE_BM)
3073 // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H)
3074 // 0xa0 (TYPE_232H, TYPE_230X)
3075 i = 0;
3076 switch (ftdi->type)
3077 {
3078 case TYPE_2232H:
3079 case TYPE_4232H:
3080 i += 2;
3081 /* Fall through*/
3082 case TYPE_R:
3083 i += 2;
3084 /* Fall through*/
3085 case TYPE_2232C:
3086 i += 2;
3087 /* Fall through*/
3088 case TYPE_AM:
3089 case TYPE_BM:
3090 i += 0x94;
3091 break;
3092 case TYPE_232H:
3093 case TYPE_230X:
3094 i = 0xa0;
3095 break;
3096 }
3097 /* Wrap around 0x80 for 128 byte EEPROMS (Internal and 93x46) */
3098 eeprom_size_mask = eeprom->size -1;
3099 free_end = i & eeprom_size_mask;
3100
3101 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3102 // Addr 0F: Length of manufacturer string
3103 // Output manufacturer
3104 output[0x0E] = i; // calculate offset
3105 output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++;
3106 output[i & eeprom_size_mask] = 0x03, i++; // type: string
3107 for (j = 0; j < manufacturer_size; j++)
3108 {
3109 output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++;
3110 output[i & eeprom_size_mask] = 0x00, i++;
3111 }
3112 output[0x0F] = manufacturer_size*2 + 2;
3113
3114 // Addr 10: Offset of the product string + 0x80, calculated later
3115 // Addr 11: Length of product string
3116 output[0x10] = i | 0x80; // calculate offset
3117 output[i & eeprom_size_mask] = product_size*2 + 2, i++;
3118 output[i & eeprom_size_mask] = 0x03, i++;
3119 for (j = 0; j < product_size; j++)
3120 {
3121 output[i & eeprom_size_mask] = eeprom->product[j], i++;
3122 output[i & eeprom_size_mask] = 0x00, i++;
3123 }
3124 output[0x11] = product_size*2 + 2;
3125
3126 if (eeprom->use_serial) {
3127 // Addr 12: Offset of the serial string + 0x80, calculated later
3128 // Addr 13: Length of serial string
3129 output[0x12] = i | 0x80; // calculate offset
3130 output[i & eeprom_size_mask] = serial_size*2 + 2, i++;
3131 output[i & eeprom_size_mask] = 0x03, i++;
3132 for (j = 0; j < serial_size; j++)
3133 {
3134 output[i & eeprom_size_mask] = eeprom->serial[j], i++;
3135 output[i & eeprom_size_mask] = 0x00, i++;
3136 }
3137 output[0x13] = serial_size*2 + 2;
3138 }
3139
3140 // Legacy port name and PnP fields for FT2232 and newer chips
3141 // It doesn't appear when written with FT_Prog for FT4232H chip.
3142 if (ftdi->type > TYPE_BM && ftdi->type != TYPE_4232H)
3143 {
3144 output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */
3145 i++;
3146 output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */
3147 i++;
3148 output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */
3149 i++;
3150 output[i & eeprom_size_mask] = 0x00;
3151 i++;
3152 }
3153
3154 if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */
3155 {
3156 if (eeprom->use_serial)
3157 output[0x0A] |= USE_SERIAL_NUM;
3158 else
3159 output[0x0A] &= ~USE_SERIAL_NUM;
3160 }
3161
3162 /* Bytes and Bits specific to (some) types
3163 Write linear, as this allows easier fixing */
3164 switch (ftdi->type)
3165 {
3166 case TYPE_AM:
3167 break;
3168 case TYPE_BM:
3169 output[0x0C] = eeprom->usb_version & 0xff;
3170 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3171 if (eeprom->use_usb_version)
3172 output[0x0A] |= USE_USB_VERSION_BIT;
3173 else
3174 output[0x0A] &= ~USE_USB_VERSION_BIT;
3175
3176 break;
3177 case TYPE_2232C:
3178
3179 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C);
3180 if (eeprom->channel_a_driver)
3181 output[0x00] |= DRIVER_VCP;
3182 else
3183 output[0x00] &= ~DRIVER_VCP;
3184
3185 if (eeprom->high_current_a)
3186 output[0x00] |= HIGH_CURRENT_DRIVE;
3187 else
3188 output[0x00] &= ~HIGH_CURRENT_DRIVE;
3189
3190 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C);
3191 if (eeprom->channel_b_driver)
3192 output[0x01] |= DRIVER_VCP;
3193 else
3194 output[0x01] &= ~DRIVER_VCP;
3195
3196 if (eeprom->high_current_b)
3197 output[0x01] |= HIGH_CURRENT_DRIVE;
3198 else
3199 output[0x01] &= ~HIGH_CURRENT_DRIVE;
3200
3201 if (eeprom->in_is_isochronous)
3202 output[0x0A] |= 0x1;
3203 else
3204 output[0x0A] &= ~0x1;
3205 if (eeprom->out_is_isochronous)
3206 output[0x0A] |= 0x2;
3207 else
3208 output[0x0A] &= ~0x2;
3209 if (eeprom->suspend_pull_downs)
3210 output[0x0A] |= 0x4;
3211 else
3212 output[0x0A] &= ~0x4;
3213 if (eeprom->use_usb_version)
3214 output[0x0A] |= USE_USB_VERSION_BIT;
3215 else
3216 output[0x0A] &= ~USE_USB_VERSION_BIT;
3217
3218 output[0x0C] = eeprom->usb_version & 0xff;
3219 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3220 output[0x14] = eeprom->chip;
3221 break;
3222 case TYPE_R:
3223 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_R);
3224 if (eeprom->high_current)
3225 output[0x00] |= HIGH_CURRENT_DRIVE_R;
3226
3227 /* Field is inverted for TYPE_R: Bit 00.3 set to 1 is D2XX, VCP is 0 */
3228 if (eeprom->channel_a_driver)
3229 output[0x00] &= ~DRIVER_VCP;
3230 else
3231 output[0x00] |= DRIVER_VCP;
3232
3233 if (eeprom->external_oscillator)
3234 output[0x00] |= 0x02;
3235 output[0x01] = 0x40; /* Hard coded Endpoint Size */
3236
3237 if (eeprom->suspend_pull_downs)
3238 output[0x0A] |= 0x4;
3239 else
3240 output[0x0A] &= ~0x4;
3241 output[0x0B] = eeprom->invert;
3242 output[0x0C] = eeprom->usb_version & 0xff;
3243 output[0x0D] = (eeprom->usb_version>>8) & 0xff;
3244
3245 if (eeprom->cbus_function[0] > CBUS_BB_RD)
3246 output[0x14] = CBUS_TXLED;
3247 else
3248 output[0x14] = eeprom->cbus_function[0];
3249
3250 if (eeprom->cbus_function[1] > CBUS_BB_RD)
3251 output[0x14] |= CBUS_RXLED<<4;
3252 else
3253 output[0x14] |= eeprom->cbus_function[1]<<4;
3254
3255 if (eeprom->cbus_function[2] > CBUS_BB_RD)
3256 output[0x15] = CBUS_TXDEN;
3257 else
3258 output[0x15] = eeprom->cbus_function[2];
3259
3260 if (eeprom->cbus_function[3] > CBUS_BB_RD)
3261 output[0x15] |= CBUS_PWREN<<4;
3262 else
3263 output[0x15] |= eeprom->cbus_function[3]<<4;
3264
3265 if (eeprom->cbus_function[4] > CBUS_CLK6)
3266 output[0x16] = CBUS_SLEEP;
3267 else
3268 output[0x16] = eeprom->cbus_function[4];
3269 break;
3270 case TYPE_2232H:
3271 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H);
3272 if (eeprom->channel_a_driver)
3273 output[0x00] |= DRIVER_VCP;
3274 else
3275 output[0x00] &= ~DRIVER_VCP;
3276
3277 output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H);
3278 if (eeprom->channel_b_driver)
3279 output[0x01] |= DRIVER_VCP;
3280 else
3281 output[0x01] &= ~DRIVER_VCP;
3282
3283 if (eeprom->suspend_dbus7)
3284 output[0x01] |= SUSPEND_DBUS7_BIT;
3285 else
3286 output[0x01] &= ~SUSPEND_DBUS7_BIT;
3287
3288 if (eeprom->suspend_pull_downs)
3289 output[0x0A] |= 0x4;
3290 else
3291 output[0x0A] &= ~0x4;
3292
3293 if (eeprom->group0_drive > DRIVE_16MA)
3294 output[0x0c] |= DRIVE_16MA;
3295 else
3296 output[0x0c] |= eeprom->group0_drive;
3297 if (eeprom->group0_schmitt)
3298 output[0x0c] |= IS_SCHMITT;
3299 if (eeprom->group0_slew)
3300 output[0x0c] |= SLOW_SLEW;
3301
3302 if (eeprom->group1_drive > DRIVE_16MA)
3303 output[0x0c] |= DRIVE_16MA<<4;
3304 else
3305 output[0x0c] |= eeprom->group1_drive<<4;
3306 if (eeprom->group1_schmitt)
3307 output[0x0c] |= IS_SCHMITT<<4;
3308 if (eeprom->group1_slew)
3309 output[0x0c] |= SLOW_SLEW<<4;
3310
3311 if (eeprom->group2_drive > DRIVE_16MA)
3312 output[0x0d] |= DRIVE_16MA;
3313 else
3314 output[0x0d] |= eeprom->group2_drive;
3315 if (eeprom->group2_schmitt)
3316 output[0x0d] |= IS_SCHMITT;
3317 if (eeprom->group2_slew)
3318 output[0x0d] |= SLOW_SLEW;
3319
3320 if (eeprom->group3_drive > DRIVE_16MA)
3321 output[0x0d] |= DRIVE_16MA<<4;
3322 else
3323 output[0x0d] |= eeprom->group3_drive<<4;
3324 if (eeprom->group3_schmitt)
3325 output[0x0d] |= IS_SCHMITT<<4;
3326 if (eeprom->group3_slew)
3327 output[0x0d] |= SLOW_SLEW<<4;
3328
3329 output[0x18] = eeprom->chip;
3330
3331 break;
3332 case TYPE_4232H:
3333 if (eeprom->channel_a_driver)
3334 output[0x00] |= DRIVER_VCP;
3335 else
3336 output[0x00] &= ~DRIVER_VCP;
3337 if (eeprom->channel_b_driver)
3338 output[0x01] |= DRIVER_VCP;
3339 else
3340 output[0x01] &= ~DRIVER_VCP;
3341 if (eeprom->channel_c_driver)
3342 output[0x00] |= (DRIVER_VCP << 4);
3343 else
3344 output[0x00] &= ~(DRIVER_VCP << 4);
3345 if (eeprom->channel_d_driver)
3346 output[0x01] |= (DRIVER_VCP << 4);
3347 else
3348 output[0x01] &= ~(DRIVER_VCP << 4);
3349
3350 if (eeprom->suspend_pull_downs)
3351 output[0x0a] |= 0x4;
3352 else
3353 output[0x0a] &= ~0x4;
3354
3355 if (eeprom->channel_a_rs485enable)
3356 output[0x0b] |= CHANNEL_IS_RS485 << 0;
3357 else
3358 output[0x0b] &= ~(CHANNEL_IS_RS485 << 0);
3359 if (eeprom->channel_b_rs485enable)
3360 output[0x0b] |= CHANNEL_IS_RS485 << 1;
3361 else
3362 output[0x0b] &= ~(CHANNEL_IS_RS485 << 1);
3363 if (eeprom->channel_c_rs485enable)
3364 output[0x0b] |= CHANNEL_IS_RS485 << 2;
3365 else
3366 output[0x0b] &= ~(CHANNEL_IS_RS485 << 2);
3367 if (eeprom->channel_d_rs485enable)
3368 output[0x0b] |= CHANNEL_IS_RS485 << 3;
3369 else
3370 output[0x0b] &= ~(CHANNEL_IS_RS485 << 3);
3371
3372 if (eeprom->group0_drive > DRIVE_16MA)
3373 output[0x0c] |= DRIVE_16MA;
3374 else
3375 output[0x0c] |= eeprom->group0_drive;
3376 if (eeprom->group0_schmitt)
3377 output[0x0c] |= IS_SCHMITT;
3378 if (eeprom->group0_slew)
3379 output[0x0c] |= SLOW_SLEW;
3380
3381 if (eeprom->group1_drive > DRIVE_16MA)
3382 output[0x0c] |= DRIVE_16MA<<4;
3383 else
3384 output[0x0c] |= eeprom->group1_drive<<4;
3385 if (eeprom->group1_schmitt)
3386 output[0x0c] |= IS_SCHMITT<<4;
3387 if (eeprom->group1_slew)
3388 output[0x0c] |= SLOW_SLEW<<4;
3389
3390 if (eeprom->group2_drive > DRIVE_16MA)
3391 output[0x0d] |= DRIVE_16MA;
3392 else
3393 output[0x0d] |= eeprom->group2_drive;
3394 if (eeprom->group2_schmitt)
3395 output[0x0d] |= IS_SCHMITT;
3396 if (eeprom->group2_slew)
3397 output[0x0d] |= SLOW_SLEW;
3398
3399 if (eeprom->group3_drive > DRIVE_16MA)
3400 output[0x0d] |= DRIVE_16MA<<4;
3401 else
3402 output[0x0d] |= eeprom->group3_drive<<4;
3403 if (eeprom->group3_schmitt)
3404 output[0x0d] |= IS_SCHMITT<<4;
3405 if (eeprom->group3_slew)
3406 output[0x0d] |= SLOW_SLEW<<4;
3407
3408 output[0x18] = eeprom->chip;
3409
3410 break;
3411 case TYPE_232H:
3412 output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H);
3413 if (eeprom->channel_a_driver)
3414 output[0x00] |= DRIVER_VCPH;
3415 else
3416 output[0x00] &= ~DRIVER_VCPH;
3417
3418 if (eeprom->powersave)
3419 output[0x01] |= POWER_SAVE_DISABLE_H;
3420 else
3421 output[0x01] &= ~POWER_SAVE_DISABLE_H;
3422
3423 if (eeprom->suspend_pull_downs)
3424 output[0x0a] |= 0x4;
3425 else
3426 output[0x0a] &= ~0x4;
3427
3428 if (eeprom->clock_polarity)
3429 output[0x01] |= FT1284_CLK_IDLE_STATE;
3430 else
3431 output[0x01] &= ~FT1284_CLK_IDLE_STATE;
3432 if (eeprom->data_order)
3433 output[0x01] |= FT1284_DATA_LSB;
3434 else
3435 output[0x01] &= ~FT1284_DATA_LSB;
3436 if (eeprom->flow_control)
3437 output[0x01] |= FT1284_FLOW_CONTROL;
3438 else
3439 output[0x01] &= ~FT1284_FLOW_CONTROL;
3440
3441 if (eeprom->group0_drive > DRIVE_16MA)
3442 output[0x0c] |= DRIVE_16MA;
3443 else
3444 output[0x0c] |= eeprom->group0_drive;
3445 if (eeprom->group0_schmitt)
3446 output[0x0c] |= IS_SCHMITT;
3447 if (eeprom->group0_slew)
3448 output[0x0c] |= SLOW_SLEW;
3449
3450 if (eeprom->group1_drive > DRIVE_16MA)
3451 output[0x0d] |= DRIVE_16MA;
3452 else
3453 output[0x0d] |= eeprom->group1_drive;
3454 if (eeprom->group1_schmitt)
3455 output[0x0d] |= IS_SCHMITT;
3456 if (eeprom->group1_slew)
3457 output[0x0d] |= SLOW_SLEW;
3458
3459 set_ft232h_cbus(eeprom, output);
3460
3461 output[0x1e] = eeprom->chip;
3462 /* FIXME: Build FT232H specific EEPROM settings */
3463 break;
3464 case TYPE_230X:
3465 output[0x00] = 0x80; /* Actually, leave the default value */
3466 /*FIXME: Make DBUS & CBUS Control configurable*/
3467 output[0x0c] = 0; /* DBUS drive 4mA, CBUS drive 4mA like factory default */
3468 for (j = 0; j <= 6; j++)
3469 {
3470 output[0x1a + j] = eeprom->cbus_function[j];
3471 }
3472 output[0x0b] = eeprom->invert;
3473 break;
3474 }
3475
3476 /* First address without use */
3477 free_start = 0;
3478 switch (ftdi->type)
3479 {
3480 case TYPE_230X:
3481 free_start += 2;
3482 /* Fall through*/
3483 case TYPE_232H:
3484 free_start += 6;
3485 /* Fall through*/
3486 case TYPE_2232H:
3487 case TYPE_4232H:
3488 free_start += 2;
3489 /* Fall through*/
3490 case TYPE_R:
3491 free_start += 2;
3492 /* Fall through*/
3493 case TYPE_2232C:
3494 free_start++;
3495 /* Fall through*/
3496 case TYPE_AM:
3497 case TYPE_BM:
3498 free_start += 0x14;
3499 }
3500
3501 /* Arbitrary user data */
3502 if (eeprom->user_data && eeprom->user_data_size >= 0)
3503 {
3504 if (eeprom->user_data_addr < free_start)
3505 fprintf(stderr,"Warning, user data starts inside the generated data!\n");
3506 if (eeprom->user_data_addr + eeprom->user_data_size >= free_end)
3507 fprintf(stderr,"Warning, user data overlaps the strings area!\n");
3508 if (eeprom->user_data_addr + eeprom->user_data_size > eeprom->size)
3509 ftdi_error_return(-1,"eeprom size exceeded");
3510 memcpy(output + eeprom->user_data_addr, eeprom->user_data, eeprom->user_data_size);
3511 }
3512
3513 // calculate checksum
3514 checksum = 0xAAAA;
3515
3516 for (i = 0; i < eeprom->size/2-1; i++)
3517 {
3518 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3519 {
3520 /* FT230X has a user section in the MTP which is not part of the checksum */
3521 i = 0x40;
3522 }
3523 if ((ftdi->type == TYPE_230X) && (i >= 0x40) && (i < 0x50)) {
3524 uint16_t data = 0;
3525 if (ftdi_read_eeprom_location(ftdi, i, &data)) {
3526 fprintf(stderr, "Reading Factory Configuration Data failed\n");
3527 i = 0x50;
3528 }
3529 value = data;
3530 output[i * 2] = data;
3531 output[(i * 2) + 1] = data >> 8;
3532 }
3533 else {
3534 value = output[i*2];
3535 value += output[(i*2)+1] << 8;
3536 }
3537 checksum = value^checksum;
3538 checksum = (checksum << 1) | (checksum >> 15);
3539 }
3540
3541 output[eeprom->size-2] = checksum;
3542 output[eeprom->size-1] = checksum >> 8;
3543
3544 eeprom->initialized_for_connected_device = 1;
3545 return user_area_size;
3546}
3547/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted
3548 * EEPROM structure
3549 *
3550 * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we
3551 */
3552static unsigned char bit2type(unsigned char bits)
3553{
3554 switch (bits)
3555 {
3556 case 0: return CHANNEL_IS_UART;
3557 case 1: return CHANNEL_IS_FIFO;
3558 case 2: return CHANNEL_IS_OPTO;
3559 case 4: return CHANNEL_IS_CPU;
3560 case 8: return CHANNEL_IS_FT1284;
3561 default:
3562 fprintf(stderr," Unexpected value %d for Hardware Interface type\n",
3563 bits);
3564 }
3565 return 0;
3566}
3567/* Decode 230X / 232R type chips invert bits
3568 * Prints directly to stdout.
3569*/
3570static void print_inverted_bits(int invert)
3571{
3572 const char *r_bits[] = {"TXD","RXD","RTS","CTS","DTR","DSR","DCD","RI"};
3573 int i;
3574
3575 fprintf(stdout,"Inverted bits:");
3576 for (i=0; i<8; i++)
3577 if ((invert & (1<<i)) == (1<<i))
3578 fprintf(stdout," %s",r_bits[i]);
3579
3580 fprintf(stdout,"\n");
3581}
3582/**
3583 Decode binary EEPROM image into an ftdi_eeprom structure.
3584
3585 For FT-X devices use AN_201 FT-X MTP memory Configuration to decode.
3586
3587 \param ftdi pointer to ftdi_context
3588 \param verbose Decode EEPROM on stdout
3589
3590 \retval 0: all fine
3591 \retval -1: something went wrong
3592
3593 FIXME: How to pass size? How to handle size field in ftdi_eeprom?
3594 FIXME: Strings are malloc'ed here and should be freed somewhere
3595*/
3596int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose)
3597{
3598 int i, j;
3599 unsigned short checksum, eeprom_checksum, value;
3600 unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0;
3601 int eeprom_size;
3602 struct ftdi_eeprom *eeprom;
3603 unsigned char *buf = NULL;
3604
3605 if (ftdi == NULL)
3606 ftdi_error_return(-1,"No context");
3607 if (ftdi->eeprom == NULL)
3608 ftdi_error_return(-1,"No eeprom structure");
3609
3610 eeprom = ftdi->eeprom;
3611 eeprom_size = eeprom->size;
3612 buf = ftdi->eeprom->buf;
3613
3614 // Addr 02: Vendor ID
3615 eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8);
3616
3617 // Addr 04: Product ID
3618 eeprom->product_id = buf[0x04] + (buf[0x05] << 8);
3619
3620 // Addr 06: Device release number
3621 eeprom->release_number = buf[0x06] + (buf[0x07]<<8);
3622
3623 // Addr 08: Config descriptor
3624 // Bit 7: always 1
3625 // Bit 6: 1 if this device is self powered, 0 if bus powered
3626 // Bit 5: 1 if this device uses remote wakeup
3627 eeprom->self_powered = !!(buf[0x08] & 0x40);
3628 eeprom->remote_wakeup = !!(buf[0x08] & 0x20);
3629
3630 // Addr 09: Max power consumption: max power = value * 2 mA
3631 eeprom->max_power = MAX_POWER_MILLIAMP_PER_UNIT * buf[0x09];
3632
3633 // Addr 0A: Chip configuration
3634 // Bit 7: 0 - reserved
3635 // Bit 6: 0 - reserved
3636 // Bit 5: 0 - reserved
3637 // Bit 4: 1 - Change USB version on BM and 2232C
3638 // Bit 3: 1 - Use the serial number string
3639 // Bit 2: 1 - Enable suspend pull downs for lower power
3640 // Bit 1: 1 - Out EndPoint is Isochronous
3641 // Bit 0: 1 - In EndPoint is Isochronous
3642 //
3643 eeprom->in_is_isochronous = !!(buf[0x0A]&0x01);
3644 eeprom->out_is_isochronous = !!(buf[0x0A]&0x02);
3645 eeprom->suspend_pull_downs = !!(buf[0x0A]&0x04);
3646 eeprom->use_serial = !!(buf[0x0A] & USE_SERIAL_NUM);
3647 eeprom->use_usb_version = !!(buf[0x0A] & USE_USB_VERSION_BIT);
3648
3649 // Addr 0C: USB version low byte when 0x0A
3650 // Addr 0D: USB version high byte when 0x0A
3651 eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8);
3652
3653 // Addr 0E: Offset of the manufacturer string + 0x80, calculated later
3654 // Addr 0F: Length of manufacturer string
3655 manufacturer_size = buf[0x0F]/2;
3656 if (eeprom->manufacturer)
3657 free(eeprom->manufacturer);
3658 if (manufacturer_size > 0)
3659 {
3660 eeprom->manufacturer = (char *)malloc(manufacturer_size);
3661 if (eeprom->manufacturer)
3662 {
3663 // Decode manufacturer
3664 i = buf[0x0E] & (eeprom_size -1); // offset
3665 for (j=0; j<manufacturer_size-1; j++)
3666 {
3667 eeprom->manufacturer[j] = buf[2*j+i+2];
3668 }
3669 eeprom->manufacturer[j] = '\0';
3670 }
3671 }
3672 else eeprom->manufacturer = NULL;
3673
3674 // Addr 10: Offset of the product string + 0x80, calculated later
3675 // Addr 11: Length of product string
3676 if (eeprom->product)
3677 free(eeprom->product);
3678 product_size = buf[0x11]/2;
3679 if (product_size > 0)
3680 {
3681 eeprom->product = (char *)malloc(product_size);
3682 if (eeprom->product)
3683 {
3684 // Decode product name
3685 i = buf[0x10] & (eeprom_size -1); // offset
3686 for (j=0; j<product_size-1; j++)
3687 {
3688 eeprom->product[j] = buf[2*j+i+2];
3689 }
3690 eeprom->product[j] = '\0';
3691 }
3692 }
3693 else eeprom->product = NULL;
3694
3695 // Addr 12: Offset of the serial string + 0x80, calculated later
3696 // Addr 13: Length of serial string
3697 if (eeprom->serial)
3698 free(eeprom->serial);
3699 serial_size = buf[0x13]/2;
3700 if (serial_size > 0)
3701 {
3702 eeprom->serial = (char *)malloc(serial_size);
3703 if (eeprom->serial)
3704 {
3705 // Decode serial
3706 i = buf[0x12] & (eeprom_size -1); // offset
3707 for (j=0; j<serial_size-1; j++)
3708 {
3709 eeprom->serial[j] = buf[2*j+i+2];
3710 }
3711 eeprom->serial[j] = '\0';
3712 }
3713 }
3714 else eeprom->serial = NULL;
3715
3716 // verify checksum
3717 checksum = 0xAAAA;
3718
3719 for (i = 0; i < eeprom_size/2-1; i++)
3720 {
3721 if ((ftdi->type == TYPE_230X) && (i == 0x12))
3722 {
3723 /* FT230X has a user section in the MTP which is not part of the checksum */
3724 i = 0x40;
3725 }
3726 value = buf[i*2];
3727 value += buf[(i*2)+1] << 8;
3728
3729 checksum = value^checksum;
3730 checksum = (checksum << 1) | (checksum >> 15);
3731 }
3732
3733 eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8);
3734
3735 if (eeprom_checksum != checksum)
3736 {
3737 fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum);
3738 ftdi_error_return(-1,"EEPROM checksum error");
3739 }
3740
3741 eeprom->channel_a_type = 0;
3742 if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM))
3743 {
3744 eeprom->chip = -1;
3745 }
3746 else if (ftdi->type == TYPE_2232C)
3747 {
3748 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3749 eeprom->channel_a_driver = !!(buf[0x00] & DRIVER_VCP);
3750 eeprom->high_current_a = !!(buf[0x00] & HIGH_CURRENT_DRIVE);
3751 eeprom->channel_b_type = buf[0x01] & 0x7;
3752 eeprom->channel_b_driver = !!(buf[0x01] & DRIVER_VCP);
3753 eeprom->high_current_b = !!(buf[0x01] & HIGH_CURRENT_DRIVE);
3754 eeprom->chip = buf[0x14];
3755 }
3756 else if (ftdi->type == TYPE_R)
3757 {
3758 /* TYPE_R flags D2XX, not VCP as all others */
3759 eeprom->channel_a_driver = !(buf[0x00] & DRIVER_VCP); /* note: inverted flag, use a single NOT */
3760 eeprom->high_current = !!(buf[0x00] & HIGH_CURRENT_DRIVE_R);
3761 eeprom->external_oscillator = !!(buf[0x00] & 0x02);
3762 if ( (buf[0x01]&0x40) != 0x40)
3763 fprintf(stderr,
3764 "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size."
3765 " If this happened with the\n"
3766 " EEPROM programmed by FTDI tools, please report "
3767 "to libftdi@developer.intra2net.com\n");
3768
3769 eeprom->chip = buf[0x16];
3770 // Addr 0B: Invert data lines
3771 // Works only on FT232R, not FT245R, but no way to distinguish
3772 eeprom->invert = buf[0x0B]; /* note: not a bitflag */
3773 // Addr 14: CBUS function: CBUS0, CBUS1
3774 // Addr 15: CBUS function: CBUS2, CBUS3
3775 // Addr 16: CBUS function: CBUS5
3776 eeprom->cbus_function[0] = buf[0x14] & 0x0f;
3777 eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f;
3778 eeprom->cbus_function[2] = buf[0x15] & 0x0f;
3779 eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f;
3780 eeprom->cbus_function[4] = buf[0x16] & 0x0f;
3781 }
3782 else if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3783 {
3784 eeprom->channel_a_driver = !!(buf[0x00] & DRIVER_VCP);
3785 eeprom->channel_b_driver = !!(buf[0x01] & DRIVER_VCP);
3786
3787 if (ftdi->type == TYPE_2232H)
3788 {
3789 eeprom->channel_a_type = bit2type(buf[0x00] & 0x7);
3790 eeprom->channel_b_type = bit2type(buf[0x01] & 0x7);
3791 eeprom->suspend_dbus7 = !!(buf[0x01] & SUSPEND_DBUS7_BIT);
3792 }
3793 else
3794 {
3795 eeprom->channel_c_driver = !!((buf[0x00] >> 4) & DRIVER_VCP);
3796 eeprom->channel_d_driver = !!((buf[0x01] >> 4) & DRIVER_VCP);
3797 eeprom->channel_a_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 0));
3798 eeprom->channel_b_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 1));
3799 eeprom->channel_c_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 2));
3800 eeprom->channel_d_rs485enable = !!(buf[0x0b] & (CHANNEL_IS_RS485 << 3));
3801 }
3802
3803 eeprom->chip = buf[0x18];
3804 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA; /* not a bitflag */
3805 eeprom->group0_schmitt = !!(buf[0x0c] & IS_SCHMITT);
3806 eeprom->group0_slew = !!(buf[0x0c] & SLOW_SLEW);
3807 eeprom->group1_drive = (buf[0x0c] >> 4) & DRIVE_16MA; /* not a bitflag */
3808 eeprom->group1_schmitt = !!((buf[0x0c] >> 4) & IS_SCHMITT);
3809 eeprom->group1_slew = !!((buf[0x0c] >> 4) & SLOW_SLEW);
3810 eeprom->group2_drive = buf[0x0d] & DRIVE_16MA; /* not a bitflag */
3811 eeprom->group2_schmitt = !!(buf[0x0d] & IS_SCHMITT);
3812 eeprom->group2_slew = !!(buf[0x0d] & SLOW_SLEW);
3813 eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA; /* not a bitflag */
3814 eeprom->group3_schmitt = !!((buf[0x0d] >> 4) & IS_SCHMITT);
3815 eeprom->group3_slew = !!((buf[0x0d] >> 4) & SLOW_SLEW);
3816 }
3817 else if (ftdi->type == TYPE_232H)
3818 {
3819 eeprom->channel_a_type = buf[0x00] & 0xf;
3820 eeprom->channel_a_driver = !!(buf[0x00] & DRIVER_VCPH);
3821 eeprom->clock_polarity = !!(buf[0x01] & FT1284_CLK_IDLE_STATE);
3822 eeprom->data_order = !!(buf[0x01] & FT1284_DATA_LSB);
3823 eeprom->flow_control = !!(buf[0x01] & FT1284_FLOW_CONTROL);
3824 eeprom->powersave = !!(buf[0x01] & POWER_SAVE_DISABLE_H);
3825 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA; /* not a bitflag */
3826 eeprom->group0_schmitt = !!(buf[0x0c] & IS_SCHMITT);
3827 eeprom->group0_slew = !!(buf[0x0c] & SLOW_SLEW);
3828 eeprom->group1_drive = buf[0x0d] & DRIVE_16MA; /* not a bitflag */
3829 eeprom->group1_schmitt = !!(buf[0x0d] & IS_SCHMITT);
3830 eeprom->group1_slew = !!(buf[0x0d] & SLOW_SLEW);
3831
3832 for(i=0; i<5; i++)
3833 {
3834 eeprom->cbus_function[2*i ] = buf[0x18+i] & 0x0f;
3835 eeprom->cbus_function[2*i+1] = (buf[0x18+i] >> 4) & 0x0f;
3836 }
3837 eeprom->chip = buf[0x1e];
3838 /*FIXME: Decipher more values*/
3839 }
3840 else if (ftdi->type == TYPE_230X)
3841 {
3842 for(i=0; i<4; i++)
3843 {
3844 eeprom->cbus_function[i] = buf[0x1a + i] & 0xFF;
3845 }
3846 eeprom->group0_drive = buf[0x0c] & DRIVE_16MA; /* not a bitflag */
3847 eeprom->group0_schmitt = !!(buf[0x0c] & IS_SCHMITT);
3848 eeprom->group0_slew = !!(buf[0x0c] & SLOW_SLEW);
3849 eeprom->group1_drive = (buf[0x0c] >> 4) & DRIVE_16MA; /* not a bitflag */
3850 eeprom->group1_schmitt = !!((buf[0x0c] >> 4) & IS_SCHMITT);
3851 eeprom->group1_slew = !!((buf[0x0c] >> 4) & SLOW_SLEW);
3852
3853 eeprom->invert = buf[0xb]; /* not a bitflag */
3854 }
3855
3856 if (verbose)
3857 {
3858 const char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"};
3859 fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id);
3860 fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id);
3861 fprintf(stdout, "Release: 0x%04x\n",eeprom->release_number);
3862
3863 if (eeprom->self_powered)
3864 fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n");
3865 else
3866 fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power,
3867 (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n");
3868 if (eeprom->manufacturer)
3869 fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer);
3870 if (eeprom->product)
3871 fprintf(stdout, "Product: %s\n",eeprom->product);
3872 if (eeprom->serial)
3873 fprintf(stdout, "Serial: %s\n",eeprom->serial);
3874 fprintf(stdout, "Checksum : %04x\n", checksum);
3875 if (ftdi->type == TYPE_R) {
3876 fprintf(stdout, "Internal EEPROM\n");
3877 fprintf(stdout,"Oscillator: %s\n", eeprom->external_oscillator?"External":"Internal");
3878 }
3879 else if (eeprom->chip >= 0x46)
3880 fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip);
3881 if (eeprom->suspend_dbus7)
3882 fprintf(stdout, "Suspend on DBUS7\n");
3883 if (eeprom->suspend_pull_downs)
3884 fprintf(stdout, "Pull IO pins low during suspend\n");
3885 if(eeprom->powersave)
3886 {
3887 if(ftdi->type >= TYPE_232H)
3888 fprintf(stdout,"Enter low power state on ACBUS7\n");
3889 }
3890 if (eeprom->remote_wakeup)
3891 fprintf(stdout, "Enable Remote Wake Up\n");
3892 fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1);
3893 if (ftdi->type >= TYPE_2232C)
3894 fprintf(stdout,"Channel A has Mode %s%s%s\n",
3895 channel_mode[eeprom->channel_a_type],
3896 (eeprom->channel_a_driver)?" VCP":"",
3897 (eeprom->high_current_a)?" High Current IO":"");
3898 if (ftdi->type == TYPE_232H)
3899 {
3900 fprintf(stdout,"FT1284 Mode Clock is idle %s, %s first, %sFlow Control\n",
3901 (eeprom->clock_polarity)?"HIGH":"LOW",
3902 (eeprom->data_order)?"LSB":"MSB",
3903 (eeprom->flow_control)?"":"No ");
3904 }
3905 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_2232C))
3906 fprintf(stdout,"Channel B has Mode %s%s%s\n",
3907 channel_mode[eeprom->channel_b_type],
3908 (eeprom->channel_b_driver)?" VCP":"",
3909 (eeprom->high_current_b)?" High Current IO":"");
3910 if (ftdi->type == TYPE_4232H)
3911 {
3912 fprintf(stdout,"Channel C has Mode UART%s\n",
3913 (eeprom->channel_c_driver)?" VCP":"");
3914 fprintf(stdout,"Channel D has Mode UART%s\n",
3915 (eeprom->channel_d_driver)?" VCP":"");
3916 }
3917 if (((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C)) &&
3918 eeprom->use_usb_version)
3919 fprintf(stdout,"Use explicit USB Version %04x\n",eeprom->usb_version);
3920
3921 if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H))
3922 {
3923 fprintf(stdout,"%s has %d mA drive%s%s\n",
3924 (ftdi->type == TYPE_2232H)?"AL":"A",
3925 (eeprom->group0_drive+1) *4,
3926 (eeprom->group0_schmitt)?" Schmitt Input":"",
3927 (eeprom->group0_slew)?" Slow Slew":"");
3928 fprintf(stdout,"%s has %d mA drive%s%s\n",
3929 (ftdi->type == TYPE_2232H)?"AH":"B",
3930 (eeprom->group1_drive+1) *4,
3931 (eeprom->group1_schmitt)?" Schmitt Input":"",
3932 (eeprom->group1_slew)?" Slow Slew":"");
3933 fprintf(stdout,"%s has %d mA drive%s%s\n",
3934 (ftdi->type == TYPE_2232H)?"BL":"C",
3935 (eeprom->group2_drive+1) *4,
3936 (eeprom->group2_schmitt)?" Schmitt Input":"",
3937 (eeprom->group2_slew)?" Slow Slew":"");
3938 fprintf(stdout,"%s has %d mA drive%s%s\n",
3939 (ftdi->type == TYPE_2232H)?"BH":"D",
3940 (eeprom->group3_drive+1) *4,
3941 (eeprom->group3_schmitt)?" Schmitt Input":"",
3942 (eeprom->group3_slew)?" Slow Slew":"");
3943 }
3944 else if (ftdi->type == TYPE_232H)
3945 {
3946 const char *cbush_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3947 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3948 "CLK30","CLK15","CLK7_5"
3949 };
3950 fprintf(stdout,"ACBUS has %d mA drive%s%s\n",
3951 (eeprom->group0_drive+1) *4,
3952 (eeprom->group0_schmitt)?" Schmitt Input":"",
3953 (eeprom->group0_slew)?" Slow Slew":"");
3954 fprintf(stdout,"ADBUS has %d mA drive%s%s\n",
3955 (eeprom->group1_drive+1) *4,
3956 (eeprom->group1_schmitt)?" Schmitt Input":"",
3957 (eeprom->group1_slew)?" Slow Slew":"");
3958 for (i=0; i<10; i++)
3959 {
3960 if (eeprom->cbus_function[i]<= CBUSH_CLK7_5 )
3961 fprintf(stdout,"C%d Function: %s\n", i,
3962 cbush_mux[eeprom->cbus_function[i]]);
3963 }
3964 }
3965 else if (ftdi->type == TYPE_230X)
3966 {
3967 const char *cbusx_mux[] = {"TRISTATE","TXLED","RXLED", "TXRXLED","PWREN",
3968 "SLEEP","DRIVE_0","DRIVE_1","IOMODE","TXDEN",
3969 "CLK24","CLK12","CLK6","BAT_DETECT","BAT_DETECT#",
3970 "I2C_TXE#", "I2C_RXF#", "VBUS_SENSE", "BB_WR#",
3971 "BBRD#", "TIME_STAMP", "AWAKE#",
3972 };
3973 fprintf(stdout,"DBUS has %d mA drive%s%s\n",
3974 (eeprom->group0_drive+1) *4,
3975 (eeprom->group0_schmitt)?" Schmitt Input":"",
3976 (eeprom->group0_slew)?" Slow Slew":"");
3977 fprintf(stdout,"CBUS has %d mA drive%s%s\n",
3978 (eeprom->group1_drive+1) *4,
3979 (eeprom->group1_schmitt)?" Schmitt Input":"",
3980 (eeprom->group1_slew)?" Slow Slew":"");
3981 for (i=0; i<4; i++)
3982 {
3983 if (eeprom->cbus_function[i]<= CBUSX_AWAKE)
3984 fprintf(stdout,"CBUS%d Function: %s\n", i, cbusx_mux[eeprom->cbus_function[i]]);
3985 }
3986
3987 if (eeprom->invert)
3988 print_inverted_bits(eeprom->invert);
3989 }
3990
3991 if (ftdi->type == TYPE_R)
3992 {
3993 const char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED",
3994 "SLEEP","CLK48","CLK24","CLK12","CLK6",
3995 "IOMODE","BB_WR","BB_RD"
3996 };
3997 const char *cbus_BB[] = {"RXF","TXE","RD", "WR"};
3998
3999 if (eeprom->invert)
4000 print_inverted_bits(eeprom->invert);
4001
4002 for (i=0; i<5; i++)
4003 {
4004 if (eeprom->cbus_function[i]<=CBUS_BB_RD)
4005 fprintf(stdout,"C%d Function: %s\n", i,
4006 cbus_mux[eeprom->cbus_function[i]]);
4007 else
4008 {
4009 if (i < 4)
4010 /* Running MPROG show that C0..3 have fixed function Synchronous
4011 Bit Bang mode */
4012 fprintf(stdout,"C%d BB Function: %s\n", i,
4013 cbus_BB[i]);
4014 else
4015 fprintf(stdout, "Unknown CBUS mode. Might be special mode?\n");
4016 }
4017 }
4018 }
4019 }
4020 return 0;
4021}
4022
4023/**
4024 Get a value from the decoded EEPROM structure
4025
4026 \param ftdi pointer to ftdi_context
4027 \param value_name Enum of the value to query
4028 \param value Pointer to store read value
4029
4030 \retval 0: all fine
4031 \retval -1: Value doesn't exist
4032*/
4033int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int* value)
4034{
4035 switch (value_name)
4036 {
4037 case VENDOR_ID:
4038 *value = ftdi->eeprom->vendor_id;
4039 break;
4040 case PRODUCT_ID:
4041 *value = ftdi->eeprom->product_id;
4042 break;
4043 case RELEASE_NUMBER:
4044 *value = ftdi->eeprom->release_number;
4045 break;
4046 case SELF_POWERED:
4047 *value = ftdi->eeprom->self_powered;
4048 break;
4049 case REMOTE_WAKEUP:
4050 *value = ftdi->eeprom->remote_wakeup;
4051 break;
4052 case IS_NOT_PNP:
4053 *value = ftdi->eeprom->is_not_pnp;
4054 break;
4055 case SUSPEND_DBUS7:
4056 *value = ftdi->eeprom->suspend_dbus7;
4057 break;
4058 case IN_IS_ISOCHRONOUS:
4059 *value = ftdi->eeprom->in_is_isochronous;
4060 break;
4061 case OUT_IS_ISOCHRONOUS:
4062 *value = ftdi->eeprom->out_is_isochronous;
4063 break;
4064 case SUSPEND_PULL_DOWNS:
4065 *value = ftdi->eeprom->suspend_pull_downs;
4066 break;
4067 case USE_SERIAL:
4068 *value = ftdi->eeprom->use_serial;
4069 break;
4070 case USB_VERSION:
4071 *value = ftdi->eeprom->usb_version;
4072 break;
4073 case USE_USB_VERSION:
4074 *value = ftdi->eeprom->use_usb_version;
4075 break;
4076 case MAX_POWER:
4077 *value = ftdi->eeprom->max_power;
4078 break;
4079 case CHANNEL_A_TYPE:
4080 *value = ftdi->eeprom->channel_a_type;
4081 break;
4082 case CHANNEL_B_TYPE:
4083 *value = ftdi->eeprom->channel_b_type;
4084 break;
4085 case CHANNEL_A_DRIVER:
4086 *value = ftdi->eeprom->channel_a_driver;
4087 break;
4088 case CHANNEL_B_DRIVER:
4089 *value = ftdi->eeprom->channel_b_driver;
4090 break;
4091 case CHANNEL_C_DRIVER:
4092 *value = ftdi->eeprom->channel_c_driver;
4093 break;
4094 case CHANNEL_D_DRIVER:
4095 *value = ftdi->eeprom->channel_d_driver;
4096 break;
4097 case CHANNEL_A_RS485:
4098 *value = ftdi->eeprom->channel_a_rs485enable;
4099 break;
4100 case CHANNEL_B_RS485:
4101 *value = ftdi->eeprom->channel_b_rs485enable;
4102 break;
4103 case CHANNEL_C_RS485:
4104 *value = ftdi->eeprom->channel_c_rs485enable;
4105 break;
4106 case CHANNEL_D_RS485:
4107 *value = ftdi->eeprom->channel_d_rs485enable;
4108 break;
4109 case CBUS_FUNCTION_0:
4110 *value = ftdi->eeprom->cbus_function[0];
4111 break;
4112 case CBUS_FUNCTION_1:
4113 *value = ftdi->eeprom->cbus_function[1];
4114 break;
4115 case CBUS_FUNCTION_2:
4116 *value = ftdi->eeprom->cbus_function[2];
4117 break;
4118 case CBUS_FUNCTION_3:
4119 *value = ftdi->eeprom->cbus_function[3];
4120 break;
4121 case CBUS_FUNCTION_4:
4122 *value = ftdi->eeprom->cbus_function[4];
4123 break;
4124 case CBUS_FUNCTION_5:
4125 *value = ftdi->eeprom->cbus_function[5];
4126 break;
4127 case CBUS_FUNCTION_6:
4128 *value = ftdi->eeprom->cbus_function[6];
4129 break;
4130 case CBUS_FUNCTION_7:
4131 *value = ftdi->eeprom->cbus_function[7];
4132 break;
4133 case CBUS_FUNCTION_8:
4134 *value = ftdi->eeprom->cbus_function[8];
4135 break;
4136 case CBUS_FUNCTION_9:
4137 *value = ftdi->eeprom->cbus_function[9];
4138 break;
4139 case HIGH_CURRENT:
4140 *value = ftdi->eeprom->high_current;
4141 break;
4142 case HIGH_CURRENT_A:
4143 *value = ftdi->eeprom->high_current_a;
4144 break;
4145 case HIGH_CURRENT_B:
4146 *value = ftdi->eeprom->high_current_b;
4147 break;
4148 case INVERT:
4149 *value = ftdi->eeprom->invert;
4150 break;
4151 case GROUP0_DRIVE:
4152 *value = ftdi->eeprom->group0_drive;
4153 break;
4154 case GROUP0_SCHMITT:
4155 *value = ftdi->eeprom->group0_schmitt;
4156 break;
4157 case GROUP0_SLEW:
4158 *value = ftdi->eeprom->group0_slew;
4159 break;
4160 case GROUP1_DRIVE:
4161 *value = ftdi->eeprom->group1_drive;
4162 break;
4163 case GROUP1_SCHMITT:
4164 *value = ftdi->eeprom->group1_schmitt;
4165 break;
4166 case GROUP1_SLEW:
4167 *value = ftdi->eeprom->group1_slew;
4168 break;
4169 case GROUP2_DRIVE:
4170 *value = ftdi->eeprom->group2_drive;
4171 break;
4172 case GROUP2_SCHMITT:
4173 *value = ftdi->eeprom->group2_schmitt;
4174 break;
4175 case GROUP2_SLEW:
4176 *value = ftdi->eeprom->group2_slew;
4177 break;
4178 case GROUP3_DRIVE:
4179 *value = ftdi->eeprom->group3_drive;
4180 break;
4181 case GROUP3_SCHMITT:
4182 *value = ftdi->eeprom->group3_schmitt;
4183 break;
4184 case GROUP3_SLEW:
4185 *value = ftdi->eeprom->group3_slew;
4186 break;
4187 case POWER_SAVE:
4188 *value = ftdi->eeprom->powersave;
4189 break;
4190 case CLOCK_POLARITY:
4191 *value = ftdi->eeprom->clock_polarity;
4192 break;
4193 case DATA_ORDER:
4194 *value = ftdi->eeprom->data_order;
4195 break;
4196 case FLOW_CONTROL:
4197 *value = ftdi->eeprom->flow_control;
4198 break;
4199 case CHIP_TYPE:
4200 *value = ftdi->eeprom->chip;
4201 break;
4202 case CHIP_SIZE:
4203 *value = ftdi->eeprom->size;
4204 break;
4205 case EXTERNAL_OSCILLATOR:
4206 *value = ftdi->eeprom->external_oscillator;
4207 break;
4208 case USER_DATA_ADDR:
4209 *value = ftdi->eeprom->user_data_addr;
4210 break;
4211 default:
4212 ftdi_error_return(-1, "Request for unknown EEPROM value");
4213 }
4214 return 0;
4215}
4216
4217/**
4218 Set a value in the decoded EEPROM Structure
4219 No parameter checking is performed
4220
4221 \param ftdi pointer to ftdi_context
4222 \param value_name Enum of the value to set
4223 \param value to set
4224
4225 \retval 0: all fine
4226 \retval -1: Value doesn't exist
4227 \retval -2: Value not user settable
4228*/
4229int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value value_name, int value)
4230{
4231 switch (value_name)
4232 {
4233 case VENDOR_ID:
4234 ftdi->eeprom->vendor_id = value;
4235 break;
4236 case PRODUCT_ID:
4237 ftdi->eeprom->product_id = value;
4238 break;
4239 case RELEASE_NUMBER:
4240 ftdi->eeprom->release_number = value;
4241 break;
4242 case SELF_POWERED:
4243 ftdi->eeprom->self_powered = value;
4244 break;
4245 case REMOTE_WAKEUP:
4246 ftdi->eeprom->remote_wakeup = value;
4247 break;
4248 case IS_NOT_PNP:
4249 ftdi->eeprom->is_not_pnp = value;
4250 break;
4251 case SUSPEND_DBUS7:
4252 ftdi->eeprom->suspend_dbus7 = value;
4253 break;
4254 case IN_IS_ISOCHRONOUS:
4255 ftdi->eeprom->in_is_isochronous = value;
4256 break;
4257 case OUT_IS_ISOCHRONOUS:
4258 ftdi->eeprom->out_is_isochronous = value;
4259 break;
4260 case SUSPEND_PULL_DOWNS:
4261 ftdi->eeprom->suspend_pull_downs = value;
4262 break;
4263 case USE_SERIAL:
4264 ftdi->eeprom->use_serial = value;
4265 break;
4266 case USB_VERSION:
4267 ftdi->eeprom->usb_version = value;
4268 break;
4269 case USE_USB_VERSION:
4270 ftdi->eeprom->use_usb_version = value;
4271 break;
4272 case MAX_POWER:
4273 ftdi->eeprom->max_power = value;
4274 break;
4275 case CHANNEL_A_TYPE:
4276 ftdi->eeprom->channel_a_type = value;
4277 break;
4278 case CHANNEL_B_TYPE:
4279 ftdi->eeprom->channel_b_type = value;
4280 break;
4281 case CHANNEL_A_DRIVER:
4282 ftdi->eeprom->channel_a_driver = value;
4283 break;
4284 case CHANNEL_B_DRIVER:
4285 ftdi->eeprom->channel_b_driver = value;
4286 break;
4287 case CHANNEL_C_DRIVER:
4288 ftdi->eeprom->channel_c_driver = value;
4289 break;
4290 case CHANNEL_D_DRIVER:
4291 ftdi->eeprom->channel_d_driver = value;
4292 break;
4293 case CHANNEL_A_RS485:
4294 ftdi->eeprom->channel_a_rs485enable = value;
4295 break;
4296 case CHANNEL_B_RS485:
4297 ftdi->eeprom->channel_b_rs485enable = value;
4298 break;
4299 case CHANNEL_C_RS485:
4300 ftdi->eeprom->channel_c_rs485enable = value;
4301 break;
4302 case CHANNEL_D_RS485:
4303 ftdi->eeprom->channel_d_rs485enable = value;
4304 break;
4305 case CBUS_FUNCTION_0:
4306 ftdi->eeprom->cbus_function[0] = value;
4307 break;
4308 case CBUS_FUNCTION_1:
4309 ftdi->eeprom->cbus_function[1] = value;
4310 break;
4311 case CBUS_FUNCTION_2:
4312 ftdi->eeprom->cbus_function[2] = value;
4313 break;
4314 case CBUS_FUNCTION_3:
4315 ftdi->eeprom->cbus_function[3] = value;
4316 break;
4317 case CBUS_FUNCTION_4:
4318 ftdi->eeprom->cbus_function[4] = value;
4319 break;
4320 case CBUS_FUNCTION_5:
4321 ftdi->eeprom->cbus_function[5] = value;
4322 break;
4323 case CBUS_FUNCTION_6:
4324 ftdi->eeprom->cbus_function[6] = value;
4325 break;
4326 case CBUS_FUNCTION_7:
4327 ftdi->eeprom->cbus_function[7] = value;
4328 break;
4329 case CBUS_FUNCTION_8:
4330 ftdi->eeprom->cbus_function[8] = value;
4331 break;
4332 case CBUS_FUNCTION_9:
4333 ftdi->eeprom->cbus_function[9] = value;
4334 break;
4335 case HIGH_CURRENT:
4336 ftdi->eeprom->high_current = value;
4337 break;
4338 case HIGH_CURRENT_A:
4339 ftdi->eeprom->high_current_a = value;
4340 break;
4341 case HIGH_CURRENT_B:
4342 ftdi->eeprom->high_current_b = value;
4343 break;
4344 case INVERT:
4345 ftdi->eeprom->invert = value;
4346 break;
4347 case GROUP0_DRIVE:
4348 ftdi->eeprom->group0_drive = value;
4349 break;
4350 case GROUP0_SCHMITT:
4351 ftdi->eeprom->group0_schmitt = value;
4352 break;
4353 case GROUP0_SLEW:
4354 ftdi->eeprom->group0_slew = value;
4355 break;
4356 case GROUP1_DRIVE:
4357 ftdi->eeprom->group1_drive = value;
4358 break;
4359 case GROUP1_SCHMITT:
4360 ftdi->eeprom->group1_schmitt = value;
4361 break;
4362 case GROUP1_SLEW:
4363 ftdi->eeprom->group1_slew = value;
4364 break;
4365 case GROUP2_DRIVE:
4366 ftdi->eeprom->group2_drive = value;
4367 break;
4368 case GROUP2_SCHMITT:
4369 ftdi->eeprom->group2_schmitt = value;
4370 break;
4371 case GROUP2_SLEW:
4372 ftdi->eeprom->group2_slew = value;
4373 break;
4374 case GROUP3_DRIVE:
4375 ftdi->eeprom->group3_drive = value;
4376 break;
4377 case GROUP3_SCHMITT:
4378 ftdi->eeprom->group3_schmitt = value;
4379 break;
4380 case GROUP3_SLEW:
4381 ftdi->eeprom->group3_slew = value;
4382 break;
4383 case CHIP_TYPE:
4384 ftdi->eeprom->chip = value;
4385 break;
4386 case POWER_SAVE:
4387 ftdi->eeprom->powersave = value;
4388 break;
4389 case CLOCK_POLARITY:
4390 ftdi->eeprom->clock_polarity = value;
4391 break;
4392 case DATA_ORDER:
4393 ftdi->eeprom->data_order = value;
4394 break;
4395 case FLOW_CONTROL:
4396 ftdi->eeprom->flow_control = value;
4397 break;
4398 case CHIP_SIZE:
4399 ftdi_error_return(-2, "EEPROM Value can't be changed");
4400 break;
4401 case EXTERNAL_OSCILLATOR:
4402 ftdi->eeprom->external_oscillator = value;
4403 break;
4404 case USER_DATA_ADDR:
4405 ftdi->eeprom->user_data_addr = value;
4406 break;
4407
4408 default :
4409 ftdi_error_return(-1, "Request to unknown EEPROM value");
4410 }
4411 ftdi->eeprom->initialized_for_connected_device = 0;
4412 return 0;
4413}
4414
4415/** Get the read-only buffer to the binary EEPROM content
4416
4417 \param ftdi pointer to ftdi_context
4418 \param buf buffer to receive EEPROM content
4419 \param size Size of receiving buffer
4420
4421 \retval 0: All fine
4422 \retval -1: struct ftdi_contxt or ftdi_eeprom missing
4423 \retval -2: Not enough room to store eeprom
4424*/
4425int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size)
4426{
4427 if (!ftdi || !(ftdi->eeprom))
4428 ftdi_error_return(-1, "No appropriate structure");
4429
4430 if (!buf || size < ftdi->eeprom->size)
4431 ftdi_error_return(-1, "Not enough room to store eeprom");
4432
4433 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4434 if (size > FTDI_MAX_EEPROM_SIZE)
4435 size = FTDI_MAX_EEPROM_SIZE;
4436
4437 memcpy(buf, ftdi->eeprom->buf, size);
4438
4439 return 0;
4440}
4441
4442/** Set the EEPROM content from the user-supplied prefilled buffer
4443
4444 \param ftdi pointer to ftdi_context
4445 \param buf buffer to read EEPROM content
4446 \param size Size of buffer
4447
4448 \retval 0: All fine
4449 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4450*/
4451int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size)
4452{
4453 if (!ftdi || !(ftdi->eeprom) || !buf)
4454 ftdi_error_return(-1, "No appropriate structure");
4455
4456 // Only copy up to FTDI_MAX_EEPROM_SIZE bytes
4457 if (size > FTDI_MAX_EEPROM_SIZE)
4458 size = FTDI_MAX_EEPROM_SIZE;
4459
4460 memcpy(ftdi->eeprom->buf, buf, size);
4461
4462 return 0;
4463}
4464
4465/** Set the EEPROM user data content from the user-supplied prefilled buffer
4466
4467 \param ftdi pointer to ftdi_context
4468 \param buf buffer to read EEPROM user data content
4469 \param size Size of buffer
4470
4471 \retval 0: All fine
4472 \retval -1: struct ftdi_context or ftdi_eeprom or buf missing
4473*/
4474int ftdi_set_eeprom_user_data(struct ftdi_context *ftdi, const char * buf, int size)
4475{
4476 if (!ftdi || !(ftdi->eeprom) || !buf)
4477 ftdi_error_return(-1, "No appropriate structure");
4478
4479 ftdi->eeprom->user_data_size = size;
4480 ftdi->eeprom->user_data = buf;
4481 return 0;
4482}
4483
4484/**
4485 Read eeprom location
4486
4487 \param ftdi pointer to ftdi_context
4488 \param eeprom_addr Address of eeprom location to be read
4489 \param eeprom_val Pointer to store read eeprom location
4490
4491 \retval 0: all fine
4492 \retval -1: read failed
4493 \retval -2: USB device unavailable
4494*/
4495int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val)
4496{
4497 unsigned char buf[2];
4498
4499 if (ftdi == NULL || ftdi->usb_dev == NULL)
4500 ftdi_error_return(-2, "USB device unavailable");
4501
4502 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, buf, 2, ftdi->usb_read_timeout) != 2)
4503 ftdi_error_return(-1, "reading eeprom failed");
4504
4505 *eeprom_val = (0xff & buf[0]) | (buf[1] << 8);
4506
4507 return 0;
4508}
4509
4510/**
4511 Read eeprom
4512
4513 \param ftdi pointer to ftdi_context
4514
4515 \retval 0: all fine
4516 \retval -1: read failed
4517 \retval -2: USB device unavailable
4518*/
4519int ftdi_read_eeprom(struct ftdi_context *ftdi)
4520{
4521 int i;
4522 unsigned char *buf;
4523
4524 if (ftdi == NULL || ftdi->usb_dev == NULL)
4525 ftdi_error_return(-2, "USB device unavailable");
4526 buf = ftdi->eeprom->buf;
4527
4528 for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++)
4529 {
4530 if (libusb_control_transfer(
4531 ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i,
4532 buf+(i*2), 2, ftdi->usb_read_timeout) != 2)
4533 ftdi_error_return(-1, "reading eeprom failed");
4534 }
4535
4536 if (ftdi->type == TYPE_R)
4537 ftdi->eeprom->size = 0x80;
4538 /* Guesses size of eeprom by comparing halves
4539 - will not work with blank eeprom */
4540 else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1))
4541 ftdi->eeprom->size = -1;
4542 else if (memcmp(buf,&buf[0x80],0x80) == 0)
4543 ftdi->eeprom->size = 0x80;
4544 else if (memcmp(buf,&buf[0x40],0x40) == 0)
4545 ftdi->eeprom->size = 0x40;
4546 else
4547 ftdi->eeprom->size = 0x100;
4548 return 0;
4549}
4550
4551/*
4552 ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID
4553 Function is only used internally
4554 \internal
4555*/
4556static unsigned char ftdi_read_chipid_shift(unsigned char value)
4557{
4558 return ((value & 1) << 1) |
4559 ((value & 2) << 5) |
4560 ((value & 4) >> 2) |
4561 ((value & 8) << 4) |
4562 ((value & 16) >> 1) |
4563 ((value & 32) >> 1) |
4564 ((value & 64) >> 4) |
4565 ((value & 128) >> 2);
4566}
4567
4568/**
4569 Read the FTDIChip-ID from R-type devices
4570
4571 \param ftdi pointer to ftdi_context
4572 \param chipid Pointer to store FTDIChip-ID
4573
4574 \retval 0: all fine
4575 \retval -1: read failed
4576 \retval -2: USB device unavailable
4577*/
4578int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid)
4579{
4580 unsigned int a = 0, b = 0;
4581
4582 if (ftdi == NULL || ftdi->usb_dev == NULL)
4583 ftdi_error_return(-2, "USB device unavailable");
4584
4585 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2)
4586 {
4587 a = a << 8 | a >> 8;
4588 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2)
4589 {
4590 b = b << 8 | b >> 8;
4591 a = (a << 16) | (b & 0xFFFF);
4592 a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8
4593 | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24;
4594 *chipid = a ^ 0xa5f0f7d1;
4595 return 0;
4596 }
4597 }
4598
4599 ftdi_error_return(-1, "read of FTDIChip-ID failed");
4600}
4601
4602/**
4603 Write eeprom location
4604
4605 \param ftdi pointer to ftdi_context
4606 \param eeprom_addr Address of eeprom location to be written
4607 \param eeprom_val Value to be written
4608
4609 \retval 0: all fine
4610 \retval -1: write failed
4611 \retval -2: USB device unavailable
4612 \retval -3: Invalid access to checksum protected area below 0x80
4613 \retval -4: Device can't access unprotected area
4614 \retval -5: Reading chip type failed
4615*/
4616int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr,
4617 unsigned short eeprom_val)
4618{
4619 int chip_type_location;
4620 unsigned short chip_type;
4621
4622 if (ftdi == NULL || ftdi->usb_dev == NULL)
4623 ftdi_error_return(-2, "USB device unavailable");
4624
4625 if (eeprom_addr <0x80)
4626 ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80");
4627
4628
4629 switch (ftdi->type)
4630 {
4631 case TYPE_BM:
4632 case TYPE_2232C:
4633 chip_type_location = 0x14;
4634 break;
4635 case TYPE_2232H:
4636 case TYPE_4232H:
4637 chip_type_location = 0x18;
4638 break;
4639 case TYPE_232H:
4640 chip_type_location = 0x1e;
4641 break;
4642 case TYPE_AM:
4643 case TYPE_R:
4644 case TYPE_230X:
4645 default:
4646 ftdi_error_return(-4, "Device can't access unprotected area");
4647 }
4648
4649 if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type))
4650 ftdi_error_return(-5, "Reading failed");
4651 fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type);
4652 if ((chip_type & 0xff) != 0x66)
4653 {
4654 ftdi_error_return(-6, "EEPROM is not of 93x66");
4655 }
4656
4657 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4658 SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr,
4659 NULL, 0, ftdi->usb_write_timeout) != 0)
4660 ftdi_error_return(-1, "unable to write eeprom");
4661
4662 return 0;
4663}
4664
4665/**
4666 Write eeprom
4667
4668 \param ftdi pointer to ftdi_context
4669
4670 \retval 0: all fine
4671 \retval -1: read failed
4672 \retval -2: USB device unavailable
4673 \retval -3: EEPROM not initialized for the connected device;
4674*/
4675int ftdi_write_eeprom(struct ftdi_context *ftdi)
4676{
4677 unsigned short usb_val, status;
4678 int i, ret;
4679 unsigned char *eeprom;
4680
4681 if (ftdi == NULL || ftdi->usb_dev == NULL)
4682 ftdi_error_return(-2, "USB device unavailable");
4683
4684 if(ftdi->eeprom->initialized_for_connected_device == 0)
4685 ftdi_error_return(-3, "EEPROM not initialized for the connected device");
4686
4687 eeprom = ftdi->eeprom->buf;
4688
4689 /* These commands were traced while running MProg */
4690 if ((ret = ftdi_usb_reset(ftdi)) != 0)
4691 return ret;
4692 if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0)
4693 return ret;
4694 if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0)
4695 return ret;
4696
4697 for (i = 0; i < ftdi->eeprom->size/2; i++)
4698 {
4699 /* Do not try to write to reserved area */
4700 if ((ftdi->type == TYPE_230X) && (i == 0x40))
4701 {
4702 i = 0x50;
4703 }
4704 usb_val = eeprom[i*2];
4705 usb_val += eeprom[(i*2)+1] << 8;
4706 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4707 SIO_WRITE_EEPROM_REQUEST, usb_val, i,
4708 NULL, 0, ftdi->usb_write_timeout) < 0)
4709 ftdi_error_return(-1, "unable to write eeprom");
4710 }
4711
4712 return 0;
4713}
4714
4715/**
4716 Erase eeprom
4717
4718 This is not supported on FT232R/FT245R according to the MProg manual from FTDI.
4719
4720 \param ftdi pointer to ftdi_context
4721
4722 \retval 0: all fine
4723 \retval -1: erase failed
4724 \retval -2: USB device unavailable
4725 \retval -3: Writing magic failed
4726 \retval -4: Read EEPROM failed
4727 \retval -5: Unexpected EEPROM value
4728*/
4729#define MAGIC 0x55aa
4730int ftdi_erase_eeprom(struct ftdi_context *ftdi)
4731{
4732 unsigned short eeprom_value;
4733 if (ftdi == NULL || ftdi->usb_dev == NULL)
4734 ftdi_error_return(-2, "USB device unavailable");
4735
4736 if ((ftdi->type == TYPE_R) || (ftdi->type == TYPE_230X))
4737 {
4738 ftdi->eeprom->chip = 0;
4739 return 0;
4740 }
4741
4742 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4743 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4744 ftdi_error_return(-1, "unable to erase eeprom");
4745
4746
4747 /* detect chip type by writing 0x55AA as magic at word position 0xc0
4748 Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40
4749 Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80
4750 Chip is 93x66 if magic is only read at word position 0xc0*/
4751 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
4752 SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0,
4753 NULL, 0, ftdi->usb_write_timeout) != 0)
4754 ftdi_error_return(-3, "Writing magic failed");
4755 if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value))
4756 ftdi_error_return(-4, "Reading failed");
4757 if (eeprom_value == MAGIC)
4758 {
4759 ftdi->eeprom->chip = 0x46;
4760 }
4761 else
4762 {
4763 if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value))
4764 ftdi_error_return(-4, "Reading failed");
4765 if (eeprom_value == MAGIC)
4766 ftdi->eeprom->chip = 0x56;
4767 else
4768 {
4769 if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value))
4770 ftdi_error_return(-4, "Reading failed");
4771 if (eeprom_value == MAGIC)
4772 ftdi->eeprom->chip = 0x66;
4773 else
4774 {
4775 ftdi->eeprom->chip = -1;
4776 }
4777 }
4778 }
4779 if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST,
4780 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0)
4781 ftdi_error_return(-1, "unable to erase eeprom");
4782 return 0;
4783}
4784
4785/**
4786 Get string representation for last error code
4787
4788 \param ftdi pointer to ftdi_context
4789
4790 \retval Pointer to error string
4791*/
4792const char *ftdi_get_error_string (struct ftdi_context *ftdi)
4793{
4794 if (ftdi == NULL)
4795 return "";
4796
4797 return ftdi->error_str;
4798}
4799
4800/* @} end of doxygen libftdi group */