X-Git-Url: http://developer.intra2net.com/git/?p=libftdi;a=blobdiff_plain;f=src%2Fftdi.c;h=5d6a221b91828e5e39d744f4a36cb17e46ec292f;hp=984c0b41bbf243c554d3732a90958d07ba08eb6a;hb=fccd6562b4de965f7032f5e55a5668f4629ab313;hpb=46860c4c18dabefb3cfcece2280ff55c006629c9 diff --git a/src/ftdi.c b/src/ftdi.c index 984c0b4..5cf2012 100644 --- a/src/ftdi.c +++ b/src/ftdi.c @@ -2,7 +2,7 @@ ftdi.c - description ------------------- begin : Fri Apr 4 2003 - copyright : (C) 2003 by Intra2net AG + copyright : (C) 2003-2010 by Intra2net AG email : opensource@intra2net.com ***************************************************************************/ @@ -14,208 +14,847 @@ * * ***************************************************************************/ -#include +/** + \mainpage libftdi API documentation + + Library to talk to FTDI chips. You find the latest versions of libftdi at + http://www.intra2net.com/en/developer/libftdi/ + + The library is easy to use. Have a look at this short example: + \include simple.c + + More examples can be found in the "examples" directory. +*/ +/** \addtogroup libftdi */ +/* @{ */ + +#include #include -#include +#include +#include +#include #include "ftdi.h" #define ftdi_error_return(code, str) do { \ - ftdi->error_str = str; \ + ftdi->error_str = str; \ return code; \ - } while(0); + } while(0); +#define ftdi_error_return_free_device_list(code, str, devs) do { \ + libusb_free_device_list(devs,1); \ + ftdi->error_str = str; \ + return code; \ + } while(0); -/* ftdi_init return codes: - 0: all fine - -1: couldn't allocate read buffer + +/** + Internal function to close usb device pointer. + Sets ftdi->usb_dev to NULL. + \internal + + \param ftdi pointer to ftdi_context + + \retval none +*/ +static void ftdi_usb_close_internal (struct ftdi_context *ftdi) +{ + if (ftdi && ftdi->usb_dev) + { + libusb_close (ftdi->usb_dev); + ftdi->usb_dev = NULL; + } +} + +/** + Initializes a ftdi_context. + + \param ftdi pointer to ftdi_context + + \retval 0: all fine + \retval -1: couldn't allocate read buffer + \retval -2: couldn't allocate struct buffer + + \remark This should be called before all functions */ int ftdi_init(struct ftdi_context *ftdi) { + struct ftdi_eeprom* eeprom = (struct ftdi_eeprom *)malloc(sizeof(struct ftdi_eeprom)); + ftdi->usb_ctx = NULL; ftdi->usb_dev = NULL; ftdi->usb_read_timeout = 5000; ftdi->usb_write_timeout = 5000; ftdi->type = TYPE_BM; /* chip type */ ftdi->baudrate = -1; - ftdi->bitbang_enabled = 0; + ftdi->bitbang_enabled = 0; /* 0: normal mode 1: any of the bitbang modes enabled */ ftdi->readbuffer = NULL; ftdi->readbuffer_offset = 0; ftdi->readbuffer_remaining = 0; ftdi->writebuffer_chunksize = 4096; + ftdi->max_packet_size = 0; ftdi->interface = 0; ftdi->index = 0; ftdi->in_ep = 0x02; ftdi->out_ep = 0x81; - ftdi->bitbang_mode = 1; /* 1: Normal bitbang mode, 2: SPI bitbang mode */ + ftdi->bitbang_mode = 1; /* when bitbang is enabled this holds the number of the mode */ ftdi->error_str = NULL; + if (eeprom == 0) + ftdi_error_return(-2, "Can't malloc struct ftdi_eeprom"); + memset(eeprom, 0, sizeof(struct ftdi_eeprom)); + ftdi->eeprom = eeprom; + /* All fine. Now allocate the readbuffer */ return ftdi_read_data_set_chunksize(ftdi, 4096); } -/* ftdi_set_interface - Call after ftdi_init - Open selected channels on a chip, otherwise use first channel - 0: all fine - -1: unknown interface + +/** + Allocate and initialize a new ftdi_context + + \return a pointer to a new ftdi_context, or NULL on failure +*/ +struct ftdi_context *ftdi_new(void) +{ + struct ftdi_context * ftdi = (struct ftdi_context *)malloc(sizeof(struct ftdi_context)); + + if (ftdi == NULL) + { + return NULL; + } + + if (ftdi_init(ftdi) != 0) + { + free(ftdi); + return NULL; + } + + return ftdi; +} + +/** + Open selected channels on a chip, otherwise use first channel. + + \param ftdi pointer to ftdi_context + \param interface Interface to use for FT2232C/2232H/4232H chips. + + \retval 0: all fine + \retval -1: unknown interface + \retval -2: USB device unavailable */ int ftdi_set_interface(struct ftdi_context *ftdi, enum ftdi_interface interface) { - switch (interface) { - case INTERFACE_ANY: - case INTERFACE_A: - /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */ - break; - case INTERFACE_B: - ftdi->interface = 1; - ftdi->index = INTERFACE_B; - ftdi->in_ep = 0x04; - ftdi->out_ep = 0x83; - break; - default: - ftdi_error_return(-1, "Unknown interface"); + if (ftdi == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + switch (interface) + { + case INTERFACE_ANY: + case INTERFACE_A: + /* ftdi_usb_open_desc cares to set the right index, depending on the found chip */ + break; + case INTERFACE_B: + ftdi->interface = 1; + ftdi->index = INTERFACE_B; + ftdi->in_ep = 0x04; + ftdi->out_ep = 0x83; + break; + case INTERFACE_C: + ftdi->interface = 2; + ftdi->index = INTERFACE_C; + ftdi->in_ep = 0x06; + ftdi->out_ep = 0x85; + break; + case INTERFACE_D: + ftdi->interface = 3; + ftdi->index = INTERFACE_D; + ftdi->in_ep = 0x08; + ftdi->out_ep = 0x87; + break; + default: + ftdi_error_return(-1, "Unknown interface"); } return 0; } +/** + Deinitializes a ftdi_context. + + \param ftdi pointer to ftdi_context +*/ void ftdi_deinit(struct ftdi_context *ftdi) { - if (ftdi->readbuffer != NULL) { + if (ftdi == NULL) + return; + + ftdi_usb_close_internal (ftdi); + + if (ftdi->readbuffer != NULL) + { free(ftdi->readbuffer); ftdi->readbuffer = NULL; } + + if (ftdi->eeprom != NULL) + { + if (ftdi->eeprom->manufacturer != 0) + { + free(ftdi->eeprom->manufacturer); + ftdi->eeprom->manufacturer = 0; + } + if (ftdi->eeprom->product != 0) + { + free(ftdi->eeprom->product); + ftdi->eeprom->product = 0; + } + if (ftdi->eeprom->serial != 0) + { + free(ftdi->eeprom->serial); + ftdi->eeprom->serial = 0; + } + free(ftdi->eeprom); + ftdi->eeprom = NULL; + } + libusb_exit(ftdi->usb_ctx); } +/** + Deinitialize and free an ftdi_context. -void ftdi_set_usbdev (struct ftdi_context *ftdi, usb_dev_handle *usb) + \param ftdi pointer to ftdi_context +*/ +void ftdi_free(struct ftdi_context *ftdi) { + ftdi_deinit(ftdi); + free(ftdi); +} + +/** + Use an already open libusb device. + + \param ftdi pointer to ftdi_context + \param usb libusb libusb_device_handle to use +*/ +void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb) +{ + if (ftdi == NULL) + return; + ftdi->usb_dev = usb; } -/* ftdi_usb_open return codes: - 0: all fine - -1: usb_find_busses() failed - -2: usb_find_devices() failed - -3: usb device not found - -4: unable to open device - -5: unable to claim device - -6: reset failed - -7: set baudrate failed - -8: get product description failed - -9: get serial number failed - -10: unable to close device +/** + Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which + needs to be deallocated by ftdi_list_free() after use. + + \param ftdi pointer to ftdi_context + \param devlist Pointer where to store list of found devices + \param vendor Vendor ID to search for + \param product Product ID to search for + + \retval >0: number of devices found + \retval -3: out of memory + \retval -4: libusb_init() failed + \retval -5: libusb_get_device_list() failed + \retval -6: libusb_get_device_descriptor() failed +*/ +int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devlist, int vendor, int product) +{ + struct ftdi_device_list **curdev; + libusb_device *dev; + libusb_device **devs; + int count = 0; + int i = 0; + + if (libusb_init(&ftdi->usb_ctx) < 0) + ftdi_error_return(-4, "libusb_init() failed"); + + if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0) + ftdi_error_return(-5, "libusb_get_device_list() failed"); + + curdev = devlist; + *curdev = NULL; + + while ((dev = devs[i++]) != NULL) + { + struct libusb_device_descriptor desc; + + if (libusb_get_device_descriptor(dev, &desc) < 0) + ftdi_error_return(-6, "libusb_get_device_descriptor() failed"); + + if (desc.idVendor == vendor && desc.idProduct == product) + { + *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list)); + if (!*curdev) + ftdi_error_return(-3, "out of memory"); + + (*curdev)->next = NULL; + (*curdev)->dev = dev; + + curdev = &(*curdev)->next; + count++; + } + } + + return count; +} + +/** + Frees a usb device list. + + \param devlist USB device list created by ftdi_usb_find_all() +*/ +void ftdi_list_free(struct ftdi_device_list **devlist) +{ + struct ftdi_device_list *curdev, *next; + + for (curdev = *devlist; curdev != NULL;) + { + next = curdev->next; + free(curdev); + curdev = next; + } + + *devlist = NULL; +} + +/** + Frees a usb device list. + + \param devlist USB device list created by ftdi_usb_find_all() +*/ +void ftdi_list_free2(struct ftdi_device_list *devlist) +{ + ftdi_list_free(&devlist); +} + +/** + Return device ID strings from the usb device. + + The parameters manufacturer, description and serial may be NULL + or pointer to buffers to store the fetched strings. + + \note Use this function only in combination with ftdi_usb_find_all() + as it closes the internal "usb_dev" after use. + + \param ftdi pointer to ftdi_context + \param dev libusb usb_dev to use + \param manufacturer Store manufacturer string here if not NULL + \param mnf_len Buffer size of manufacturer string + \param description Store product description string here if not NULL + \param desc_len Buffer size of product description string + \param serial Store serial string here if not NULL + \param serial_len Buffer size of serial string + + \retval 0: all fine + \retval -1: wrong arguments + \retval -4: unable to open device + \retval -7: get product manufacturer failed + \retval -8: get product description failed + \retval -9: get serial number failed + \retval -11: libusb_get_device_descriptor() failed +*/ +int ftdi_usb_get_strings(struct ftdi_context * ftdi, struct libusb_device * dev, + char * manufacturer, int mnf_len, char * description, int desc_len, char * serial, int serial_len) +{ + struct libusb_device_descriptor desc; + + if ((ftdi==NULL) || (dev==NULL)) + return -1; + + if (libusb_open(dev, &ftdi->usb_dev) < 0) + ftdi_error_return(-4, "libusb_open() failed"); + + if (libusb_get_device_descriptor(dev, &desc) < 0) + ftdi_error_return(-11, "libusb_get_device_descriptor() failed"); + + if (manufacturer != NULL) + { + if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iManufacturer, (unsigned char *)manufacturer, mnf_len) < 0) + { + ftdi_usb_close_internal (ftdi); + ftdi_error_return(-7, "libusb_get_string_descriptor_ascii() failed"); + } + } + + if (description != NULL) + { + if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)description, desc_len) < 0) + { + ftdi_usb_close_internal (ftdi); + ftdi_error_return(-8, "libusb_get_string_descriptor_ascii() failed"); + } + } + + if (serial != NULL) + { + if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)serial, serial_len) < 0) + { + ftdi_usb_close_internal (ftdi); + ftdi_error_return(-9, "libusb_get_string_descriptor_ascii() failed"); + } + } + + ftdi_usb_close_internal (ftdi); + + return 0; +} + +/** + * Internal function to determine the maximum packet size. + * \param ftdi pointer to ftdi_context + * \param dev libusb usb_dev to use + * \retval Maximum packet size for this device + */ +static unsigned int _ftdi_determine_max_packet_size(struct ftdi_context *ftdi, libusb_device *dev) +{ + struct libusb_device_descriptor desc; + struct libusb_config_descriptor *config0; + unsigned int packet_size; + + // Sanity check + if (ftdi == NULL || dev == NULL) + return 64; + + // Determine maximum packet size. Init with default value. + // New hi-speed devices from FTDI use a packet size of 512 bytes + // but could be connected to a normal speed USB hub -> 64 bytes packet size. + if (ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H) + packet_size = 512; + else + packet_size = 64; + + if (libusb_get_device_descriptor(dev, &desc) < 0) + return packet_size; + + if (libusb_get_config_descriptor(dev, 0, &config0) < 0) + return packet_size; + + if (desc.bNumConfigurations > 0) + { + if (ftdi->interface < config0->bNumInterfaces) + { + struct libusb_interface interface = config0->interface[ftdi->interface]; + if (interface.num_altsetting > 0) + { + struct libusb_interface_descriptor descriptor = interface.altsetting[0]; + if (descriptor.bNumEndpoints > 0) + { + packet_size = descriptor.endpoint[0].wMaxPacketSize; + } + } + } + } + + libusb_free_config_descriptor (config0); + return packet_size; +} + +/** + Opens a ftdi device given by an usb_device. + + \param ftdi pointer to ftdi_context + \param dev libusb usb_dev to use + + \retval 0: all fine + \retval -3: unable to config device + \retval -4: unable to open device + \retval -5: unable to claim device + \retval -6: reset failed + \retval -7: set baudrate failed + \retval -8: ftdi context invalid + \retval -9: libusb_get_device_descriptor() failed + \retval -10: libusb_get_config_descriptor() failed + \retval -11: libusb_etach_kernel_driver() failed + \retval -12: libusb_get_configuration() failed +*/ +int ftdi_usb_open_dev(struct ftdi_context *ftdi, libusb_device *dev) +{ + struct libusb_device_descriptor desc; + struct libusb_config_descriptor *config0; + int cfg, cfg0, detach_errno = 0; + + if (ftdi == NULL) + ftdi_error_return(-8, "ftdi context invalid"); + + if (libusb_open(dev, &ftdi->usb_dev) < 0) + ftdi_error_return(-4, "libusb_open() failed"); + + if (libusb_get_device_descriptor(dev, &desc) < 0) + ftdi_error_return(-9, "libusb_get_device_descriptor() failed"); + + if (libusb_get_config_descriptor(dev, 0, &config0) < 0) + ftdi_error_return(-10, "libusb_get_config_descriptor() failed"); + cfg0 = config0->bConfigurationValue; + libusb_free_config_descriptor (config0); + + // Try to detach ftdi_sio kernel module. + // + // The return code is kept in a separate variable and only parsed + // if usb_set_configuration() or usb_claim_interface() fails as the + // detach operation might be denied and everything still works fine. + // Likely scenario is a static ftdi_sio kernel module. + if (libusb_detach_kernel_driver(ftdi->usb_dev, ftdi->interface) !=0) + detach_errno = errno; + + if (libusb_get_configuration (ftdi->usb_dev, &cfg) < 0) + ftdi_error_return(-12, "libusb_get_configuration () failed"); + // set configuration (needed especially for windows) + // tolerate EBUSY: one device with one configuration, but two interfaces + // and libftdi sessions to both interfaces (e.g. FT2232) + if (desc.bNumConfigurations > 0 && cfg != cfg0) + { + if (libusb_set_configuration(ftdi->usb_dev, cfg0) < 0) + { + ftdi_usb_close_internal (ftdi); + if(detach_errno == EPERM) + { + ftdi_error_return(-8, "inappropriate permissions on device!"); + } + else + { + ftdi_error_return(-3, "unable to set usb configuration. Make sure the default FTDI driver is not in use"); + } + } + } + + if (libusb_claim_interface(ftdi->usb_dev, ftdi->interface) < 0) + { + ftdi_usb_close_internal (ftdi); + if(detach_errno == EPERM) + { + ftdi_error_return(-8, "inappropriate permissions on device!"); + } + else + { + ftdi_error_return(-5, "unable to claim usb device. Make sure the default FTDI driver is not in use"); + } + } + + if (ftdi_usb_reset (ftdi) != 0) + { + ftdi_usb_close_internal (ftdi); + ftdi_error_return(-6, "ftdi_usb_reset failed"); + } + + // Try to guess chip type + // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0 + if (desc.bcdDevice == 0x400 || (desc.bcdDevice == 0x200 + && desc.iSerialNumber == 0)) + ftdi->type = TYPE_BM; + else if (desc.bcdDevice == 0x200) + ftdi->type = TYPE_AM; + else if (desc.bcdDevice == 0x500) + ftdi->type = TYPE_2232C; + else if (desc.bcdDevice == 0x600) + ftdi->type = TYPE_R; + else if (desc.bcdDevice == 0x700) + ftdi->type = TYPE_2232H; + else if (desc.bcdDevice == 0x800) + ftdi->type = TYPE_4232H; + + // Set default interface on dual/quad type chips + switch(ftdi->type) + { + case TYPE_2232C: + case TYPE_2232H: + case TYPE_4232H: + if (!ftdi->index) + ftdi->index = INTERFACE_A; + break; + default: + break; + } + + // Determine maximum packet size + ftdi->max_packet_size = _ftdi_determine_max_packet_size(ftdi, dev); + + if (ftdi_set_baudrate (ftdi, 9600) != 0) + { + ftdi_usb_close_internal (ftdi); + ftdi_error_return(-7, "set baudrate failed"); + } + + ftdi_error_return(0, "all fine"); +} + +/** + Opens the first device with a given vendor and product ids. + + \param ftdi pointer to ftdi_context + \param vendor Vendor ID + \param product Product ID + + \retval same as ftdi_usb_open_desc() */ int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product) { return ftdi_usb_open_desc(ftdi, vendor, product, NULL, NULL); } +/** + Opens the first device with a given, vendor id, product id, + description and serial. + + \param ftdi pointer to ftdi_context + \param vendor Vendor ID + \param product Product ID + \param description Description to search for. Use NULL if not needed. + \param serial Serial to search for. Use NULL if not needed. + + \retval 0: all fine + \retval -3: usb device not found + \retval -4: unable to open device + \retval -5: unable to claim device + \retval -6: reset failed + \retval -7: set baudrate failed + \retval -8: get product description failed + \retval -9: get serial number failed + \retval -11: libusb_init() failed + \retval -12: libusb_get_device_list() failed + \retval -13: libusb_get_device_descriptor() failed +*/ int ftdi_usb_open_desc(struct ftdi_context *ftdi, int vendor, int product, const char* description, const char* serial) { - struct usb_bus *bus; - struct usb_device *dev; + return ftdi_usb_open_desc_index(ftdi,vendor,product,description,serial,0); +} + +/** + Opens the index-th device with a given, vendor id, product id, + description and serial. + + \param ftdi pointer to ftdi_context + \param vendor Vendor ID + \param product Product ID + \param description Description to search for. Use NULL if not needed. + \param serial Serial to search for. Use NULL if not needed. + \param index Number of matching device to open if there are more than one, starts with 0. + + \retval 0: all fine + \retval -1: usb_find_busses() failed + \retval -2: usb_find_devices() failed + \retval -3: usb device not found + \retval -4: unable to open device + \retval -5: unable to claim device + \retval -6: reset failed + \retval -7: set baudrate failed + \retval -8: get product description failed + \retval -9: get serial number failed + \retval -10: unable to close device + \retval -11: ftdi context invalid +*/ +int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product, + const char* description, const char* serial, unsigned int index) +{ + libusb_device *dev; + libusb_device **devs; char string[256]; + int i = 0; + + if (libusb_init(&ftdi->usb_ctx) < 0) + ftdi_error_return(-11, "libusb_init() failed"); + + if (ftdi == NULL) + ftdi_error_return(-11, "ftdi context invalid"); + + if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0) + ftdi_error_return(-12, "libusb_get_device_list() failed"); + + while ((dev = devs[i++]) != NULL) + { + struct libusb_device_descriptor desc; + int res; - usb_init(); - - if (usb_find_busses() < 0) - ftdi_error_return(-1, "usb_find_busses() failed"); - - if (usb_find_devices() < 0) - ftdi_error_return(-2,"usb_find_devices() failed"); - - for (bus = usb_busses; bus; bus = bus->next) { - for (dev = bus->devices; dev; dev = dev->next) { - if (dev->descriptor.idVendor == vendor - && dev->descriptor.idProduct == product) { - if (!(ftdi->usb_dev = usb_open(dev))) - ftdi_error_return(-4, "usb_open() failed"); - - if (description != NULL) { - if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iProduct, string, sizeof(string)) <= 0) { - usb_close (ftdi->usb_dev); - ftdi_error_return(-8, "unable to fetch product description"); - } - if (strncmp(string, description, sizeof(string)) != 0) { - if (usb_close (ftdi->usb_dev) < 0) - ftdi_error_return(-10, "product description not matching"); - continue; - } + if (libusb_get_device_descriptor(dev, &desc) < 0) + ftdi_error_return_free_device_list(-13, "libusb_get_device_descriptor() failed", devs); + + if (desc.idVendor == vendor && desc.idProduct == product) + { + if (libusb_open(dev, &ftdi->usb_dev) < 0) + ftdi_error_return_free_device_list(-4, "usb_open() failed", devs); + + if (description != NULL) + { + if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iProduct, (unsigned char *)string, sizeof(string)) < 0) + { + libusb_close (ftdi->usb_dev); + ftdi_error_return_free_device_list(-8, "unable to fetch product description", devs); } - if (serial != NULL) { - if (usb_get_string_simple(ftdi->usb_dev, dev->descriptor.iSerialNumber, string, sizeof(string)) <= 0) { - usb_close (ftdi->usb_dev); - ftdi_error_return(-9, "unable to fetch serial number"); - } - if (strncmp(string, serial, sizeof(string)) != 0) { - ftdi->error_str = "serial number not matching\n"; - if (usb_close (ftdi->usb_dev) != 0) - ftdi_error_return(-10, "unable to fetch serial number"); - continue; - } + if (strncmp(string, description, sizeof(string)) != 0) + { + libusb_close (ftdi->usb_dev); + continue; } - - if (usb_claim_interface(ftdi->usb_dev, ftdi->interface) != 0) { - usb_close (ftdi->usb_dev); - ftdi_error_return(-5, "unable to claim usb device. Make sure ftdi_sio is unloaded!"); + } + if (serial != NULL) + { + if (libusb_get_string_descriptor_ascii(ftdi->usb_dev, desc.iSerialNumber, (unsigned char *)string, sizeof(string)) < 0) + { + ftdi_usb_close_internal (ftdi); + ftdi_error_return_free_device_list(-9, "unable to fetch serial number", devs); } - - if (ftdi_usb_reset (ftdi) != 0) { - usb_close (ftdi->usb_dev); - ftdi_error_return(-6, "ftdi_usb_reset failed"); + if (strncmp(string, serial, sizeof(string)) != 0) + { + ftdi_usb_close_internal (ftdi); + continue; } + } - if (ftdi_set_baudrate (ftdi, 9600) != 0) { - usb_close (ftdi->usb_dev); - ftdi_error_return(-7, "set baudrate failed"); - } + ftdi_usb_close_internal (ftdi); - // Try to guess chip type - // Bug in the BM type chips: bcdDevice is 0x200 for serial == 0 - if (dev->descriptor.bcdDevice == 0x400 || (dev->descriptor.bcdDevice == 0x200 - && dev->descriptor.iSerialNumber == 0)) - ftdi->type = TYPE_BM; - else if (dev->descriptor.bcdDevice == 0x200) - ftdi->type = TYPE_AM; - else if (dev->descriptor.bcdDevice == 0x500) { - ftdi->type = TYPE_2232C; - if (!ftdi->index) - ftdi->index = INTERFACE_A; + if (index > 0) + { + index--; + continue; } - ftdi_error_return(0, "all fine"); - } + + res = ftdi_usb_open_dev(ftdi, dev); + libusb_free_device_list(devs,1); + return res; } } // device not found - ftdi_error_return(-3, "device not found"); + ftdi_error_return_free_device_list(-3, "device not found", devs); } - -int ftdi_usb_reset(struct ftdi_context *ftdi) +/** + Opens the ftdi-device described by a description-string. + Intended to be used for parsing a device-description given as commandline argument. + + \param ftdi pointer to ftdi_context + \param description NULL-terminated description-string, using this format: + \li d:\ path of bus and device-node (e.g. "003/001") within usb device tree (usually at /proc/bus/usb/) + \li i:\:\ first device with given vendor and product id, ids can be decimal, octal (preceded by "0") or hex (preceded by "0x") + \li i:\:\:\ as above with index being the number of the device (starting with 0) if there are more than one + \li s:\:\:\ first device with given vendor id, product id and serial string + + \note The description format may be extended in later versions. + + \retval 0: all fine + \retval -1: libusb_init() failed + \retval -2: libusb_get_device_list() failed + \retval -3: usb device not found + \retval -4: unable to open device + \retval -5: unable to claim device + \retval -6: reset failed + \retval -7: set baudrate failed + \retval -8: get product description failed + \retval -9: get serial number failed + \retval -10: unable to close device + \retval -11: illegal description format + \retval -12: ftdi context invalid +*/ +int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description) { -#if defined(__linux__) - struct utsname kernelver; - int k_major, k_minor, k_myver; -#endif + if (ftdi == NULL) + ftdi_error_return(-12, "ftdi context invalid"); + + if (description[0] == 0 || description[1] != ':') + ftdi_error_return(-11, "illegal description format"); + + if (description[0] == 'd') + { + libusb_device *dev; + libusb_device **devs; + unsigned int bus_number, device_address; + int i = 0; + + if (libusb_init (&ftdi->usb_ctx) < 0) + ftdi_error_return(-1, "libusb_init() failed"); + + if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0) + ftdi_error_return(-2, "libusb_get_device_list() failed"); + + /* XXX: This doesn't handle symlinks/odd paths/etc... */ + if (sscanf (description + 2, "%u/%u", &bus_number, &device_address) != 2) + ftdi_error_return_free_device_list(-11, "illegal description format", devs); + + while ((dev = devs[i++]) != NULL) + { + int ret; + if (bus_number == libusb_get_bus_number (dev) + && device_address == libusb_get_device_address (dev)) + { + ret = ftdi_usb_open_dev(ftdi, dev); + libusb_free_device_list(devs,1); + return ret; + } + } - if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) - ftdi_error_return(-1,"FTDI reset failed"); + // device not found + ftdi_error_return_free_device_list(-3, "device not found", devs); + } + else if (description[0] == 'i' || description[0] == 's') + { + unsigned int vendor; + unsigned int product; + unsigned int index=0; + const char *serial=NULL; + const char *startp, *endp; + + errno=0; + startp=description+2; + vendor=strtoul((char*)startp,(char**)&endp,0); + if (*endp != ':' || endp == startp || errno != 0) + ftdi_error_return(-11, "illegal description format"); + + startp=endp+1; + product=strtoul((char*)startp,(char**)&endp,0); + if (endp == startp || errno != 0) + ftdi_error_return(-11, "illegal description format"); + + if (description[0] == 'i' && *endp != 0) + { + /* optional index field in i-mode */ + if (*endp != ':') + ftdi_error_return(-11, "illegal description format"); + + startp=endp+1; + index=strtoul((char*)startp,(char**)&endp,0); + if (*endp != 0 || endp == startp || errno != 0) + ftdi_error_return(-11, "illegal description format"); + } + if (description[0] == 's') + { + if (*endp != ':') + ftdi_error_return(-11, "illegal description format"); -#if defined(__linux__) - /* Kernel 2.6 (maybe higher versions, too) need an additional usb_reset */ - if (uname(&kernelver) == 0 && sscanf(kernelver.release, "%d.%d", &k_major, &k_minor) == 2) { - k_myver = k_major*10 + k_minor; + /* rest of the description is the serial */ + serial=endp+1; + } - if (k_myver >= 26 && usb_reset(ftdi->usb_dev) != 0) - ftdi_error_return(-2, "USB reset failed"); + return ftdi_usb_open_desc_index(ftdi, vendor, product, NULL, serial, index); } -#endif + else + { + ftdi_error_return(-11, "illegal description format"); + } +} + +/** + Resets the ftdi device. + + \param ftdi pointer to ftdi_context + + \retval 0: all fine + \retval -1: FTDI reset failed + \retval -2: USB device unavailable +*/ +int ftdi_usb_reset(struct ftdi_context *ftdi) +{ + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_RESET_REQUEST, SIO_RESET_SIO, + ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1,"FTDI reset failed"); // Invalidate data in the readbuffer ftdi->readbuffer_offset = 0; @@ -224,43 +863,113 @@ int ftdi_usb_reset(struct ftdi_context *ftdi) return 0; } -int ftdi_usb_purge_buffers(struct ftdi_context *ftdi) +/** + Clears the read buffer on the chip and the internal read buffer. + + \param ftdi pointer to ftdi_context + + \retval 0: all fine + \retval -1: read buffer purge failed + \retval -2: USB device unavailable +*/ +int ftdi_usb_purge_rx_buffer(struct ftdi_context *ftdi) { - if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 1, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_RESET_REQUEST, SIO_RESET_PURGE_RX, + ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return(-1, "FTDI purge of RX buffer failed"); // Invalidate data in the readbuffer ftdi->readbuffer_offset = 0; ftdi->readbuffer_remaining = 0; - if (usb_control_msg(ftdi->usb_dev, 0x40, 0, 2, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) - ftdi_error_return(-2, "FTDI purge of TX buffer failed"); + return 0; +} + +/** + Clears the write buffer on the chip. + + \param ftdi pointer to ftdi_context + + \retval 0: all fine + \retval -1: write buffer purge failed + \retval -2: USB device unavailable +*/ +int ftdi_usb_purge_tx_buffer(struct ftdi_context *ftdi) +{ + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_RESET_REQUEST, SIO_RESET_PURGE_TX, + ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "FTDI purge of TX buffer failed"); return 0; } -/* ftdi_usb_close return codes - 0: all fine - -1: usb_release failed - -2: usb_close failed +/** + Clears the buffers on the chip and the internal read buffer. + + \param ftdi pointer to ftdi_context + + \retval 0: all fine + \retval -1: read buffer purge failed + \retval -2: write buffer purge failed + \retval -3: USB device unavailable +*/ +int ftdi_usb_purge_buffers(struct ftdi_context *ftdi) +{ + int result; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-3, "USB device unavailable"); + + result = ftdi_usb_purge_rx_buffer(ftdi); + if (result < 0) + return -1; + + result = ftdi_usb_purge_tx_buffer(ftdi); + if (result < 0) + return -2; + + return 0; +} + + + +/** + Closes the ftdi device. Call ftdi_deinit() if you're cleaning up. + + \param ftdi pointer to ftdi_context + + \retval 0: all fine + \retval -1: usb_release failed + \retval -3: ftdi context invalid */ int ftdi_usb_close(struct ftdi_context *ftdi) { int rtn = 0; - if (usb_release_interface(ftdi->usb_dev, ftdi->interface) != 0) - rtn = -1; + if (ftdi == NULL) + ftdi_error_return(-3, "ftdi context invalid"); - if (usb_close (ftdi->usb_dev) != 0) - rtn = -2; + if (ftdi->usb_dev != NULL) + if (libusb_release_interface(ftdi->usb_dev, ftdi->interface) < 0) + rtn = -1; + + ftdi_usb_close_internal (ftdi); return rtn; } - -/* +/** ftdi_convert_baudrate returns nearest supported baud rate to that requested. Function is only used internally + \internal */ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, unsigned short *value, unsigned short *index) @@ -272,14 +981,16 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, unsigned long encoded_divisor; int i; - if (baudrate <= 0) { + if (baudrate <= 0) + { // Return error return -1; } divisor = 24000000 / baudrate; - if (ftdi->type == TYPE_AM) { + if (ftdi->type == TYPE_AM) + { // Round down to supported fraction (AM only) divisor -= am_adjust_dn[divisor & 7]; } @@ -288,31 +999,44 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, best_divisor = 0; best_baud = 0; best_baud_diff = 0; - for (i = 0; i < 2; i++) { + for (i = 0; i < 2; i++) + { int try_divisor = divisor + i; int baud_estimate; int baud_diff; // Round up to supported divisor value - if (try_divisor <= 8) { + if (try_divisor <= 8) + { // Round up to minimum supported divisor try_divisor = 8; - } else if (ftdi->type != TYPE_AM && try_divisor < 12) { + } + else if (ftdi->type != TYPE_AM && try_divisor < 12) + { // BM doesn't support divisors 9 through 11 inclusive try_divisor = 12; - } else if (divisor < 16) { + } + else if (divisor < 16) + { // AM doesn't support divisors 9 through 15 inclusive try_divisor = 16; - } else { - if (ftdi->type == TYPE_AM) { + } + else + { + if (ftdi->type == TYPE_AM) + { // Round up to supported fraction (AM only) try_divisor += am_adjust_up[try_divisor & 7]; - if (try_divisor > 0x1FFF8) { + if (try_divisor > 0x1FFF8) + { // Round down to maximum supported divisor value (for AM) try_divisor = 0x1FFF8; } - } else { - if (try_divisor > 0x1FFFF) { + } + else + { + if (try_divisor > 0x1FFFF) + { // Round down to maximum supported divisor value (for BM) try_divisor = 0x1FFFF; } @@ -321,17 +1045,22 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, // Get estimated baud rate (to nearest integer) baud_estimate = (24000000 + (try_divisor / 2)) / try_divisor; // Get absolute difference from requested baud rate - if (baud_estimate < baudrate) { + if (baud_estimate < baudrate) + { baud_diff = baudrate - baud_estimate; - } else { + } + else + { baud_diff = baud_estimate - baudrate; } - if (i == 0 || baud_diff < best_baud_diff) { + if (i == 0 || baud_diff < best_baud_diff) + { // Closest to requested baud rate so far best_divisor = try_divisor; best_baud = baud_estimate; best_baud_diff = baud_diff; - if (baud_diff == 0) { + if (baud_diff == 0) + { // Spot on! No point trying break; } @@ -340,17 +1069,21 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, // Encode the best divisor value encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14); // Deal with special cases for encoded value - if (encoded_divisor == 1) { - encoded_divisor = 0; // 3000000 baud - } else if (encoded_divisor == 0x4001) { - encoded_divisor = 1; // 2000000 baud (BM only) + if (encoded_divisor == 1) + { + encoded_divisor = 0; // 3000000 baud + } + else if (encoded_divisor == 0x4001) + { + encoded_divisor = 1; // 2000000 baud (BM only) } // Split into "value" and "index" values *value = (unsigned short)(encoded_divisor & 0xFFFF); - if(ftdi->type == TYPE_2232C) { + if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H) + { *index = (unsigned short)(encoded_divisor >> 8); *index &= 0xFF00; - *index |= ftdi->interface; + *index |= ftdi->index; } else *index = (unsigned short)(encoded_divisor >> 16); @@ -359,18 +1092,27 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, return best_baud; } -/* - ftdi_set_baudrate return codes: - 0: all fine - -1: invalid baudrate - -2: setting baudrate failed +/** + Sets the chip baud rate + + \param ftdi pointer to ftdi_context + \param baudrate baud rate to set + + \retval 0: all fine + \retval -1: invalid baudrate + \retval -2: setting baudrate failed + \retval -3: USB device unavailable */ int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate) { unsigned short value, index; int actual_baudrate; - if (ftdi->bitbang_enabled) { + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-3, "USB device unavailable"); + + if (ftdi->bitbang_enabled) + { baudrate = baudrate*4; } @@ -385,58 +1127,508 @@ int ftdi_set_baudrate(struct ftdi_context *ftdi, int baudrate) : (baudrate * 21 < actual_baudrate * 20))) ftdi_error_return (-1, "Unsupported baudrate. Note: bitbang baudrates are automatically multiplied by 4"); - if (usb_control_msg(ftdi->usb_dev, 0x40, 3, value, index, NULL, 0, ftdi->usb_write_timeout) != 0) + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_SET_BAUDRATE_REQUEST, value, + index, NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return (-2, "Setting new baudrate failed"); ftdi->baudrate = baudrate; return 0; } +/** + Set (RS232) line characteristics. + The break type can only be set via ftdi_set_line_property2() + and defaults to "off". + + \param ftdi pointer to ftdi_context + \param bits Number of bits + \param sbit Number of stop bits + \param parity Parity mode + + \retval 0: all fine + \retval -1: Setting line property failed +*/ +int ftdi_set_line_property(struct ftdi_context *ftdi, enum ftdi_bits_type bits, + enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity) +{ + return ftdi_set_line_property2(ftdi, bits, sbit, parity, BREAK_OFF); +} + +/** + Set (RS232) line characteristics + + \param ftdi pointer to ftdi_context + \param bits Number of bits + \param sbit Number of stop bits + \param parity Parity mode + \param break_type Break type + + \retval 0: all fine + \retval -1: Setting line property failed + \retval -2: USB device unavailable +*/ +int ftdi_set_line_property2(struct ftdi_context *ftdi, enum ftdi_bits_type bits, + enum ftdi_stopbits_type sbit, enum ftdi_parity_type parity, + enum ftdi_break_type break_type) +{ + unsigned short value = bits; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + switch (parity) + { + case NONE: + value |= (0x00 << 8); + break; + case ODD: + value |= (0x01 << 8); + break; + case EVEN: + value |= (0x02 << 8); + break; + case MARK: + value |= (0x03 << 8); + break; + case SPACE: + value |= (0x04 << 8); + break; + } + + switch (sbit) + { + case STOP_BIT_1: + value |= (0x00 << 11); + break; + case STOP_BIT_15: + value |= (0x01 << 11); + break; + case STOP_BIT_2: + value |= (0x02 << 11); + break; + } + switch (break_type) + { + case BREAK_OFF: + value |= (0x00 << 14); + break; + case BREAK_ON: + value |= (0x01 << 14); + break; + } + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_SET_DATA_REQUEST, value, + ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return (-1, "Setting new line property failed"); + + return 0; +} + +/** + Writes data in chunks (see ftdi_write_data_set_chunksize()) to the chip + + \param ftdi pointer to ftdi_context + \param buf Buffer with the data + \param size Size of the buffer + + \retval -666: USB device unavailable + \retval <0: error code from usb_bulk_write() + \retval >0: number of bytes written +*/ int ftdi_write_data(struct ftdi_context *ftdi, unsigned char *buf, int size) { - int ret; int offset = 0; - int total_written = 0; + int actual_length; - while (offset < size) { + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-666, "USB device unavailable"); + + while (offset < size) + { int write_size = ftdi->writebuffer_chunksize; if (offset+write_size > size) write_size = size-offset; - ret = usb_bulk_write(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, ftdi->usb_write_timeout); + if (libusb_bulk_transfer(ftdi->usb_dev, ftdi->in_ep, buf+offset, write_size, &actual_length, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "usb bulk write failed"); + + offset += actual_length; + } + + return offset; +} + +static void ftdi_read_data_cb(struct libusb_transfer *transfer) +{ + struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data; + struct ftdi_context *ftdi = tc->ftdi; + int packet_size, actual_length, num_of_chunks, chunk_remains, i, ret; + + packet_size = ftdi->max_packet_size; + + actual_length = transfer->actual_length; + + if (actual_length > 2) + { + // skip FTDI status bytes. + // Maybe stored in the future to enable modem use + num_of_chunks = actual_length / packet_size; + chunk_remains = actual_length % packet_size; + //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset); + + ftdi->readbuffer_offset += 2; + actual_length -= 2; + + if (actual_length > packet_size - 2) + { + for (i = 1; i < num_of_chunks; i++) + memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i, + ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i, + packet_size - 2); + if (chunk_remains > 2) + { + memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i, + ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i, + chunk_remains-2); + actual_length -= 2*num_of_chunks; + } + else + actual_length -= 2*(num_of_chunks-1)+chunk_remains; + } + + if (actual_length > 0) + { + // data still fits in buf? + if (tc->offset + actual_length <= tc->size) + { + memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, actual_length); + //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]); + tc->offset += actual_length; + + ftdi->readbuffer_offset = 0; + ftdi->readbuffer_remaining = 0; + + /* Did we read exactly the right amount of bytes? */ + if (tc->offset == tc->size) + { + //printf("read_data exact rem %d offset %d\n", + //ftdi->readbuffer_remaining, offset); + tc->completed = 1; + return; + } + } + else + { + // only copy part of the data or size <= readbuffer_chunksize + int part_size = tc->size - tc->offset; + memcpy (tc->buf + tc->offset, ftdi->readbuffer + ftdi->readbuffer_offset, part_size); + tc->offset += part_size; + + ftdi->readbuffer_offset += part_size; + ftdi->readbuffer_remaining = actual_length - part_size; + + /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n", + part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */ + tc->completed = 1; + return; + } + } + } + ret = libusb_submit_transfer (transfer); + if (ret < 0) + tc->completed = 1; +} + + +static void ftdi_write_data_cb(struct libusb_transfer *transfer) +{ + struct ftdi_transfer_control *tc = (struct ftdi_transfer_control *) transfer->user_data; + struct ftdi_context *ftdi = tc->ftdi; + + tc->offset += transfer->actual_length; + + if (tc->offset == tc->size) + { + tc->completed = 1; + } + else + { + int write_size = ftdi->writebuffer_chunksize; + int ret; + + if (tc->offset + write_size > tc->size) + write_size = tc->size - tc->offset; + + transfer->length = write_size; + transfer->buffer = tc->buf + tc->offset; + ret = libusb_submit_transfer (transfer); if (ret < 0) - ftdi_error_return(ret, "usb bulk write failed"); + tc->completed = 1; + } +} + + +/** + Writes data to the chip. Does not wait for completion of the transfer + nor does it make sure that the transfer was successful. + + Use libusb 1.0 asynchronous API. + + \param ftdi pointer to ftdi_context + \param buf Buffer with the data + \param size Size of the buffer + + \retval NULL: Some error happens when submit transfer + \retval !NULL: Pointer to a ftdi_transfer_control +*/ + +struct ftdi_transfer_control *ftdi_write_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size) +{ + struct ftdi_transfer_control *tc; + struct libusb_transfer *transfer = libusb_alloc_transfer(0); + int write_size, ret; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + { + libusb_free_transfer(transfer); + return NULL; + } + + tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc)); + + if (!tc || !transfer) + return NULL; + + tc->ftdi = ftdi; + tc->completed = 0; + tc->buf = buf; + tc->size = size; + tc->offset = 0; + + if (size < ftdi->writebuffer_chunksize) + write_size = size; + else + write_size = ftdi->writebuffer_chunksize; + + libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->in_ep, buf, + write_size, ftdi_write_data_cb, tc, + ftdi->usb_write_timeout); + transfer->type = LIBUSB_TRANSFER_TYPE_BULK; + + ret = libusb_submit_transfer(transfer); + if (ret < 0) + { + libusb_free_transfer(transfer); + tc->completed = 1; + tc->transfer = NULL; + return NULL; + } + tc->transfer = transfer; + + return tc; +} + +/** + Reads data from the chip. Does not wait for completion of the transfer + nor does it make sure that the transfer was successful. + + Use libusb 1.0 asynchronous API. + + \param ftdi pointer to ftdi_context + \param buf Buffer with the data + \param size Size of the buffer + + \retval NULL: Some error happens when submit transfer + \retval !NULL: Pointer to a ftdi_transfer_control +*/ + +struct ftdi_transfer_control *ftdi_read_data_submit(struct ftdi_context *ftdi, unsigned char *buf, int size) +{ + struct ftdi_transfer_control *tc; + struct libusb_transfer *transfer; + int ret; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + return NULL; + + tc = (struct ftdi_transfer_control *) malloc (sizeof (*tc)); + if (!tc) + return NULL; + + tc->ftdi = ftdi; + tc->buf = buf; + tc->size = size; + + if (size <= ftdi->readbuffer_remaining) + { + memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size); + + // Fix offsets + ftdi->readbuffer_remaining -= size; + ftdi->readbuffer_offset += size; + + /* printf("Returning bytes from buffer: %d - remaining: %d\n", size, ftdi->readbuffer_remaining); */ + + tc->completed = 1; + tc->offset = size; + tc->transfer = NULL; + return tc; + } + + tc->completed = 0; + if (ftdi->readbuffer_remaining != 0) + { + memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining); + + tc->offset = ftdi->readbuffer_remaining; + } + else + tc->offset = 0; + + transfer = libusb_alloc_transfer(0); + if (!transfer) + { + free (tc); + return NULL; + } + + ftdi->readbuffer_remaining = 0; + ftdi->readbuffer_offset = 0; + + libusb_fill_bulk_transfer(transfer, ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi_read_data_cb, tc, ftdi->usb_read_timeout); + transfer->type = LIBUSB_TRANSFER_TYPE_BULK; + + ret = libusb_submit_transfer(transfer); + if (ret < 0) + { + libusb_free_transfer(transfer); + free (tc); + return NULL; + } + tc->transfer = transfer; + + return tc; +} + +/** + Wait for completion of the transfer. - total_written += ret; - offset += write_size; + Use libusb 1.0 asynchronous API. + + \param tc pointer to ftdi_transfer_control + + \retval < 0: Some error happens + \retval >= 0: Data size transferred +*/ + +int ftdi_transfer_data_done(struct ftdi_transfer_control *tc) +{ + int ret; + + while (!tc->completed) + { + ret = libusb_handle_events(tc->ftdi->usb_ctx); + if (ret < 0) + { + if (ret == LIBUSB_ERROR_INTERRUPTED) + continue; + libusb_cancel_transfer(tc->transfer); + while (!tc->completed) + if (libusb_handle_events(tc->ftdi->usb_ctx) < 0) + break; + libusb_free_transfer(tc->transfer); + free (tc); + return ret; + } } - return total_written; + ret = tc->offset; + /** + * tc->transfer could be NULL if "(size <= ftdi->readbuffer_remaining)" + * at ftdi_read_data_submit(). Therefore, we need to check it here. + **/ + if (tc->transfer) + { + if (tc->transfer->status != LIBUSB_TRANSFER_COMPLETED) + ret = -1; + libusb_free_transfer(tc->transfer); + } + free(tc); + return ret; } +/** + Configure write buffer chunk size. + Default is 4096. + + \param ftdi pointer to ftdi_context + \param chunksize Chunk size + \retval 0: all fine + \retval -1: ftdi context invalid +*/ int ftdi_write_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize) { + if (ftdi == NULL) + ftdi_error_return(-1, "ftdi context invalid"); + ftdi->writebuffer_chunksize = chunksize; return 0; } +/** + Get write buffer chunk size. + + \param ftdi pointer to ftdi_context + \param chunksize Pointer to store chunk size in + \retval 0: all fine + \retval -1: ftdi context invalid +*/ int ftdi_write_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize) { + if (ftdi == NULL) + ftdi_error_return(-1, "ftdi context invalid"); + *chunksize = ftdi->writebuffer_chunksize; return 0; } +/** + Reads data in chunks (see ftdi_read_data_set_chunksize()) from the chip. + Automatically strips the two modem status bytes transfered during every read. + + \param ftdi pointer to ftdi_context + \param buf Buffer to store data in + \param size Size of the buffer + + \retval -666: USB device unavailable + \retval <0: error code from libusb_bulk_transfer() + \retval 0: no data was available + \retval >0: number of bytes read + +*/ int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size) { - int offset = 0, ret = 1, i, num_of_chunks, chunk_remains; + int offset = 0, ret, i, num_of_chunks, chunk_remains; + int packet_size = ftdi->max_packet_size; + int actual_length = 1; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-666, "USB device unavailable"); + + // Packet size sanity check (avoid division by zero) + if (packet_size == 0) + ftdi_error_return(-1, "max_packet_size is bogus (zero)"); // everything we want is still in the readbuffer? - if (size <= ftdi->readbuffer_remaining) { + if (size <= ftdi->readbuffer_remaining) + { memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, size); // Fix offsets @@ -448,71 +1640,83 @@ int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size) return size; } // something still in the readbuffer, but not enough to satisfy 'size'? - if (ftdi->readbuffer_remaining != 0) { + if (ftdi->readbuffer_remaining != 0) + { memcpy (buf, ftdi->readbuffer+ftdi->readbuffer_offset, ftdi->readbuffer_remaining); // Fix offset offset += ftdi->readbuffer_remaining; } // do the actual USB read - while (offset < size && ret > 0) { + while (offset < size && actual_length > 0) + { ftdi->readbuffer_remaining = 0; ftdi->readbuffer_offset = 0; /* returns how much received */ - ret = usb_bulk_read (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, ftdi->usb_read_timeout); + ret = libusb_bulk_transfer (ftdi->usb_dev, ftdi->out_ep, ftdi->readbuffer, ftdi->readbuffer_chunksize, &actual_length, ftdi->usb_read_timeout); if (ret < 0) ftdi_error_return(ret, "usb bulk read failed"); - if (ret > 2) { + if (actual_length > 2) + { // skip FTDI status bytes. // Maybe stored in the future to enable modem use - num_of_chunks = ret / 64; - chunk_remains = ret % 64; - //printf("ret = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", ret, num_of_chunks, chunk_remains, ftdi->readbuffer_offset); + num_of_chunks = actual_length / packet_size; + chunk_remains = actual_length % packet_size; + //printf("actual_length = %X, num_of_chunks = %X, chunk_remains = %X, readbuffer_offset = %X\n", actual_length, num_of_chunks, chunk_remains, ftdi->readbuffer_offset); ftdi->readbuffer_offset += 2; - ret -= 2; + actual_length -= 2; - if (ret > 64) { + if (actual_length > packet_size - 2) + { for (i = 1; i < num_of_chunks; i++) - memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i, - ftdi->readbuffer+ftdi->readbuffer_offset+64*i, - 62); - if (chunk_remains > 2) { - memmove (ftdi->readbuffer+ftdi->readbuffer_offset+62*i, - ftdi->readbuffer+ftdi->readbuffer_offset+64*i, + memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i, + ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i, + packet_size - 2); + if (chunk_remains > 2) + { + memmove (ftdi->readbuffer+ftdi->readbuffer_offset+(packet_size - 2)*i, + ftdi->readbuffer+ftdi->readbuffer_offset+packet_size*i, chunk_remains-2); - ret -= 2*num_of_chunks; - } else - ret -= 2*(num_of_chunks-1)+chunk_remains; + actual_length -= 2*num_of_chunks; + } + else + actual_length -= 2*(num_of_chunks-1)+chunk_remains; } - } else if (ret <= 2) { + } + else if (actual_length <= 2) + { // no more data to read? return offset; } - if (ret > 0) { + if (actual_length > 0) + { // data still fits in buf? - if (offset+ret <= size) { - memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, ret); + if (offset+actual_length <= size) + { + memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, actual_length); //printf("buf[0] = %X, buf[1] = %X\n", buf[0], buf[1]); - offset += ret; + offset += actual_length; /* Did we read exactly the right amount of bytes? */ if (offset == size) //printf("read_data exact rem %d offset %d\n", //ftdi->readbuffer_remaining, offset); return offset; - } else { + } + else + { // only copy part of the data or size <= readbuffer_chunksize int part_size = size-offset; memcpy (buf+offset, ftdi->readbuffer+ftdi->readbuffer_offset, part_size); ftdi->readbuffer_offset += part_size; - ftdi->readbuffer_remaining = ret-part_size; + ftdi->readbuffer_remaining = actual_length-part_size; offset += part_size; - /* printf("Returning part: %d - size: %d - offset: %d - ret: %d - remaining: %d\n", - part_size, size, offset, ret, ftdi->readbuffer_remaining); */ + /* printf("Returning part: %d - size: %d - offset: %d - actual_length: %d - remaining: %d\n", + part_size, size, offset, actual_length, ftdi->readbuffer_remaining); */ return offset; } @@ -522,14 +1726,36 @@ int ftdi_read_data(struct ftdi_context *ftdi, unsigned char *buf, int size) return -127; } +/** + Configure read buffer chunk size. + Default is 4096. + + Automatically reallocates the buffer. + \param ftdi pointer to ftdi_context + \param chunksize Chunk size + + \retval 0: all fine + \retval -1: ftdi context invalid +*/ int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksize) { unsigned char *new_buf; + if (ftdi == NULL) + ftdi_error_return(-1, "ftdi context invalid"); + // Invalidate all remaining data ftdi->readbuffer_offset = 0; ftdi->readbuffer_remaining = 0; +#ifdef __linux__ + /* We can't set readbuffer_chunksize larger than MAX_BULK_BUFFER_LENGTH, + which is defined in libusb-1.0. Otherwise, each USB read request will + be divided into multiple URBs. This will cause issues on Linux kernel + older than 2.6.32. */ + if (chunksize > 16384) + chunksize = 16384; +#endif if ((new_buf = (unsigned char *)realloc(ftdi->readbuffer, chunksize)) == NULL) ftdi_error_return(-1, "out of memory for readbuffer"); @@ -540,66 +1766,144 @@ int ftdi_read_data_set_chunksize(struct ftdi_context *ftdi, unsigned int chunksi return 0; } +/** + Get read buffer chunk size. + + \param ftdi pointer to ftdi_context + \param chunksize Pointer to store chunk size in + \retval 0: all fine + \retval -1: FTDI context invalid +*/ int ftdi_read_data_get_chunksize(struct ftdi_context *ftdi, unsigned int *chunksize) { + if (ftdi == NULL) + ftdi_error_return(-1, "FTDI context invalid"); + *chunksize = ftdi->readbuffer_chunksize; return 0; } +/** + Enable bitbang mode. + + \deprecated use \ref ftdi_set_bitmode with mode BITMODE_BITBANG instead + \param ftdi pointer to ftdi_context + \param bitmask Bitmask to configure lines. + HIGH/ON value configures a line as output. + + \retval 0: all fine + \retval -1: can't enable bitbang mode + \retval -2: USB device unavailable +*/ int ftdi_enable_bitbang(struct ftdi_context *ftdi, unsigned char bitmask) { unsigned short usb_val; + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + usb_val = bitmask; // low byte: bitmask /* FT2232C: Set bitbang_mode to 2 to enable SPI */ usb_val |= (ftdi->bitbang_mode << 8); - if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, + NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return(-1, "unable to enter bitbang mode. Perhaps not a BM type chip?"); ftdi->bitbang_enabled = 1; return 0; } +/** + Disable bitbang mode. + + \param ftdi pointer to ftdi_context + \retval 0: all fine + \retval -1: can't disable bitbang mode + \retval -2: USB device unavailable +*/ int ftdi_disable_bitbang(struct ftdi_context *ftdi) { - if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, 0, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return(-1, "unable to leave bitbang mode. Perhaps not a BM type chip?"); ftdi->bitbang_enabled = 0; return 0; } +/** + Enable/disable bitbang modes. + + \param ftdi pointer to ftdi_context + \param bitmask Bitmask to configure lines. + HIGH/ON value configures a line as output. + \param mode Bitbang mode: use the values defined in \ref ftdi_mpsse_mode + \retval 0: all fine + \retval -1: can't enable bitbang mode + \retval -2: USB device unavailable +*/ int ftdi_set_bitmode(struct ftdi_context *ftdi, unsigned char bitmask, unsigned char mode) { unsigned short usb_val; + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + usb_val = bitmask; // low byte: bitmask usb_val |= (mode << 8); - if (usb_control_msg(ftdi->usb_dev, 0x40, 0x0B, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_BITMODE_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return(-1, "unable to configure bitbang mode. Perhaps not a 2232C type chip?"); ftdi->bitbang_mode = mode; - ftdi->bitbang_enabled = (mode == BITMODE_BITBANG || mode == BITMODE_SYNCBB)?1:0; + ftdi->bitbang_enabled = (mode == BITMODE_RESET) ? 0 : 1; return 0; } +/** + Directly read pin state, circumventing the read buffer. Useful for bitbang mode. + + \param ftdi pointer to ftdi_context + \param pins Pointer to store pins into + + \retval 0: all fine + \retval -1: read pins failed + \retval -2: USB device unavailable +*/ int ftdi_read_pins(struct ftdi_context *ftdi, unsigned char *pins) { - unsigned short usb_val; - if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0C, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1) + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_PINS_REQUEST, 0, ftdi->index, (unsigned char *)pins, 1, ftdi->usb_read_timeout) != 1) ftdi_error_return(-1, "read pins failed"); - *pins = (unsigned char)usb_val; return 0; } +/** + Set latency timer + + The FTDI chip keeps data in the internal buffer for a specific + amount of time if the buffer is not full yet to decrease + load on the usb bus. + + \param ftdi pointer to ftdi_context + \param latency Value between 1 and 255 + \retval 0: all fine + \retval -1: latency out of range + \retval -2: unable to set latency timer + \retval -3: USB device unavailable +*/ int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency) { unsigned short usb_val; @@ -607,60 +1911,394 @@ int ftdi_set_latency_timer(struct ftdi_context *ftdi, unsigned char latency) if (latency < 1) ftdi_error_return(-1, "latency out of range. Only valid for 1-255"); + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-3, "USB device unavailable"); + usb_val = latency; - if (usb_control_msg(ftdi->usb_dev, 0x40, 0x09, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) != 0) + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_LATENCY_TIMER_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return(-2, "unable to set latency timer"); return 0; } +/** + Get latency timer + \param ftdi pointer to ftdi_context + \param latency Pointer to store latency value in + + \retval 0: all fine + \retval -1: unable to get latency timer + \retval -2: USB device unavailable +*/ int ftdi_get_latency_timer(struct ftdi_context *ftdi, unsigned char *latency) { unsigned short usb_val; - if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x0A, 0, ftdi->index, (char *)&usb_val, 1, ftdi->usb_read_timeout) != 1) + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_GET_LATENCY_TIMER_REQUEST, 0, ftdi->index, (unsigned char *)&usb_val, 1, ftdi->usb_read_timeout) != 1) ftdi_error_return(-1, "reading latency timer failed"); *latency = (unsigned char)usb_val; return 0; } +/** + Poll modem status information + + This function allows the retrieve the two status bytes of the device. + The device sends these bytes also as a header for each read access + where they are discarded by ftdi_read_data(). The chip generates + the two stripped status bytes in the absence of data every 40 ms. + + Layout of the first byte: + - B0..B3 - must be 0 + - B4 Clear to send (CTS) + 0 = inactive + 1 = active + - B5 Data set ready (DTS) + 0 = inactive + 1 = active + - B6 Ring indicator (RI) + 0 = inactive + 1 = active + - B7 Receive line signal detect (RLSD) + 0 = inactive + 1 = active + + Layout of the second byte: + - B0 Data ready (DR) + - B1 Overrun error (OE) + - B2 Parity error (PE) + - B3 Framing error (FE) + - B4 Break interrupt (BI) + - B5 Transmitter holding register (THRE) + - B6 Transmitter empty (TEMT) + - B7 Error in RCVR FIFO + + \param ftdi pointer to ftdi_context + \param status Pointer to store status information in. Must be two bytes. + + \retval 0: all fine + \retval -1: unable to retrieve status information + \retval -2: USB device unavailable +*/ +int ftdi_poll_modem_status(struct ftdi_context *ftdi, unsigned short *status) +{ + char usb_val[2]; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_POLL_MODEM_STATUS_REQUEST, 0, ftdi->index, (unsigned char *)usb_val, 2, ftdi->usb_read_timeout) != 2) + ftdi_error_return(-1, "getting modem status failed"); -void ftdi_eeprom_initdefaults(struct ftdi_eeprom *eeprom) + *status = (usb_val[1] << 8) | usb_val[0]; + + return 0; +} + +/** + Set flowcontrol for ftdi chip + + \param ftdi pointer to ftdi_context + \param flowctrl flow control to use. should be + SIO_DISABLE_FLOW_CTRL, SIO_RTS_CTS_HS, SIO_DTR_DSR_HS or SIO_XON_XOFF_HS + + \retval 0: all fine + \retval -1: set flow control failed + \retval -2: USB device unavailable +*/ +int ftdi_setflowctrl(struct ftdi_context *ftdi, int flowctrl) { - eeprom->vendor_id = 0x0403; - eeprom->product_id = 0x6001; + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_SET_FLOW_CTRL_REQUEST, 0, (flowctrl | ftdi->index), + NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "set flow control failed"); + + return 0; +} + +/** + Set dtr line + + \param ftdi pointer to ftdi_context + \param state state to set line to (1 or 0) + + \retval 0: all fine + \retval -1: set dtr failed + \retval -2: USB device unavailable +*/ +int ftdi_setdtr(struct ftdi_context *ftdi, int state) +{ + unsigned short usb_val; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (state) + usb_val = SIO_SET_DTR_HIGH; + else + usb_val = SIO_SET_DTR_LOW; + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index, + NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "set dtr failed"); - eeprom->self_powered = 1; - eeprom->remote_wakeup = 1; - eeprom->BM_type_chip = 1; + return 0; +} + +/** + Set rts line + + \param ftdi pointer to ftdi_context + \param state state to set line to (1 or 0) + + \retval 0: all fine + \retval -1: set rts failed + \retval -2: USB device unavailable +*/ +int ftdi_setrts(struct ftdi_context *ftdi, int state) +{ + unsigned short usb_val; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (state) + usb_val = SIO_SET_RTS_HIGH; + else + usb_val = SIO_SET_RTS_LOW; + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index, + NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "set of rts failed"); + + return 0; +} + +/** + Set dtr and rts line in one pass + + \param ftdi pointer to ftdi_context + \param dtr DTR state to set line to (1 or 0) + \param rts RTS state to set line to (1 or 0) + + \retval 0: all fine + \retval -1: set dtr/rts failed + \retval -2: USB device unavailable + */ +int ftdi_setdtr_rts(struct ftdi_context *ftdi, int dtr, int rts) +{ + unsigned short usb_val; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (dtr) + usb_val = SIO_SET_DTR_HIGH; + else + usb_val = SIO_SET_DTR_LOW; + + if (rts) + usb_val |= SIO_SET_RTS_HIGH; + else + usb_val |= SIO_SET_RTS_LOW; + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_SET_MODEM_CTRL_REQUEST, usb_val, ftdi->index, + NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "set of rts/dtr failed"); + + return 0; +} + +/** + Set the special event character + + \param ftdi pointer to ftdi_context + \param eventch Event character + \param enable 0 to disable the event character, non-zero otherwise + + \retval 0: all fine + \retval -1: unable to set event character + \retval -2: USB device unavailable +*/ +int ftdi_set_event_char(struct ftdi_context *ftdi, + unsigned char eventch, unsigned char enable) +{ + unsigned short usb_val; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + usb_val = eventch; + if (enable) + usb_val |= 1 << 8; + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_EVENT_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "setting event character failed"); + + return 0; +} - eeprom->in_is_isochronous = 0; - eeprom->out_is_isochronous = 0; - eeprom->suspend_pull_downs = 0; +/** + Set error character - eeprom->use_serial = 0; - eeprom->change_usb_version = 0; - eeprom->usb_version = 0x0200; - eeprom->max_power = 0; + \param ftdi pointer to ftdi_context + \param errorch Error character + \param enable 0 to disable the error character, non-zero otherwise + \retval 0: all fine + \retval -1: unable to set error character + \retval -2: USB device unavailable +*/ +int ftdi_set_error_char(struct ftdi_context *ftdi, + unsigned char errorch, unsigned char enable) +{ + unsigned short usb_val; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + usb_val = errorch; + if (enable) + usb_val |= 1 << 8; + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_SET_ERROR_CHAR_REQUEST, usb_val, ftdi->index, NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "setting error character failed"); + + return 0; +} + +/** + Init eeprom with default values. + \param ftdi pointer to ftdi_context + \param manufacturer String to use as Manufacturer + \param product String to use as Product description + \param serial String to use as Serial number description + + \retval 0: all fine + \retval -1: No struct ftdi_context + \retval -2: No struct ftdi_eeprom +*/ +int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer, + char * product, char * serial) +{ + struct ftdi_eeprom *eeprom; + + if (ftdi == NULL) + ftdi_error_return(-1, "No struct ftdi_context"); + + if (ftdi->eeprom == NULL) + ftdi_error_return(-2,"No struct ftdi_eeprom"); + + eeprom = ftdi->eeprom; + memset(eeprom, 0, sizeof(struct ftdi_eeprom)); + + eeprom->vendor_id = 0x0403; + eeprom->use_serial = USE_SERIAL_NUM; + if((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) || + (ftdi->type == TYPE_R)) + eeprom->product_id = 0x6001; + else + eeprom->product_id = 0x6010; + if (ftdi->type == TYPE_AM) + eeprom->usb_version = 0x0101; + else + eeprom->usb_version = 0x0200; + eeprom->max_power = 100; + + if (eeprom->manufacturer) + free (eeprom->manufacturer); eeprom->manufacturer = NULL; + if (manufacturer) + { + eeprom->manufacturer = malloc(strlen(manufacturer)+1); + if (eeprom->manufacturer) + strcpy(eeprom->manufacturer, manufacturer); + } + + if (eeprom->product) + free (eeprom->product); eeprom->product = NULL; + { + eeprom->product = malloc(strlen(product)+1); + if (eeprom->product) + strcpy(eeprom->product, product); + } + + if (eeprom->serial) + free (eeprom->serial); eeprom->serial = NULL; + if (serial) + { + eeprom->serial = malloc(strlen(serial)+1); + if (eeprom->serial) + strcpy(eeprom->serial, serial); + } + + + if(ftdi->type == TYPE_R) + { + eeprom->max_power = 90; + eeprom->size = 0x80; + eeprom->cbus_function[0] = CBUS_TXLED; + eeprom->cbus_function[1] = CBUS_RXLED; + eeprom->cbus_function[2] = CBUS_TXDEN; + eeprom->cbus_function[3] = CBUS_PWREN; + eeprom->cbus_function[4] = CBUS_SLEEP; + } + else + eeprom->size = -1; + return 0; } +/** + Build binary buffer from ftdi_eeprom structure. + Output is suitable for ftdi_write_eeprom(). -/* - ftdi_eeprom_build return codes: - positive value: used eeprom size - -1: eeprom size (128 bytes) exceeded by custom strings + \param ftdi pointer to ftdi_context + + \retval >0: free eeprom size + \retval -1: eeprom size (128 bytes) exceeded by custom strings + \retval -2: Invalid eeprom pointer + \retval -3: Invalid cbus function setting + \retval -4: Chip doesn't support invert + \retval -5: Chip doesn't support high current drive + \retval -6: No connected EEPROM or EEPROM Type unknown */ -int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output) +int ftdi_eeprom_build(struct ftdi_context *ftdi) { - unsigned char i, j; + unsigned char i, j, eeprom_size_mask; unsigned short checksum, value; unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0; int size_check; + struct ftdi_eeprom *eeprom; + unsigned char * output; + + if (ftdi == NULL) + ftdi_error_return(-2,"No context"); + if (ftdi->eeprom == NULL) + ftdi_error_return(-2,"No eeprom structure"); + + eeprom= ftdi->eeprom; + output = eeprom->buf; + + if(eeprom->chip == -1) + ftdi_error_return(-5,"No connected EEPROM or EEPROM type unknown"); + + if ((eeprom->chip == 0x56) || (eeprom->chip == 0x66)) + eeprom->size = 0x100; + else + eeprom->size = 0x80; if (eeprom->manufacturer != NULL) manufacturer_size = strlen(eeprom->manufacturer); @@ -669,20 +2307,37 @@ int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output) if (eeprom->serial != NULL) serial_size = strlen(eeprom->serial); - size_check = 128; // eeprom is 128 bytes - size_check -= 28; // 28 are always in use (fixed) + size_check = 0x80; + switch(ftdi->type) + { + case TYPE_2232H: + case TYPE_4232H: + size_check -= 4; + case TYPE_R: + size_check -= 4; + case TYPE_2232C: + size_check -= 4; + case TYPE_AM: + case TYPE_BM: + size_check -= 0x14*2; + } + size_check -= manufacturer_size*2; size_check -= product_size*2; size_check -= serial_size*2; + /* Space for the string type and pointer bytes */ + size_check -= -9; + // eeprom size exceeded? if (size_check < 0) return (-1); // empty eeprom - memset (output, 0, 128); + memset (ftdi->eeprom->buf, 0, FTDI_MAX_EEPROM_SIZE); + + // Bytes and Bits set for all Types - // Addr 00: Stay 00 00 // Addr 02: Vendor ID output[0x02] = eeprom->vendor_id; output[0x03] = eeprom->vendor_id >> 8; @@ -693,162 +2348,919 @@ int ftdi_eeprom_build(struct ftdi_eeprom *eeprom, unsigned char *output) // Addr 06: Device release number (0400h for BM features) output[0x06] = 0x00; - - if (eeprom->BM_type_chip == 1) - output[0x07] = 0x04; - else - output[0x07] = 0x02; + switch (ftdi->type) { + case TYPE_AM: + output[0x07] = 0x02; + break; + case TYPE_BM: + output[0x07] = 0x04; + break; + case TYPE_2232C: + output[0x07] = 0x05; + break; + case TYPE_R: + output[0x07] = 0x06; + break; + case TYPE_2232H: + output[0x07] = 0x07; + break; + case TYPE_4232H: + output[0x07] = 0x08; + break; + default: + output[0x07] = 0x00; + } // Addr 08: Config descriptor - // Bit 1: remote wakeup if 1 - // Bit 0: self powered if 1 - // - j = 0; + // Bit 7: always 1 + // Bit 6: 1 if this device is self powered, 0 if bus powered + // Bit 5: 1 if this device uses remote wakeup + // Bit 4-0: reserved - 0 + j = 0x80; if (eeprom->self_powered == 1) - j = j | 1; + j |= 0x40; if (eeprom->remote_wakeup == 1) - j = j | 2; + j |= 0x20; output[0x08] = j; // Addr 09: Max power consumption: max power = value * 2 mA - output[0x09] = eeprom->max_power; - ; + output[0x09] = eeprom->max_power>>1; + + if(ftdi->type != TYPE_AM) + { + // Addr 0A: Chip configuration + // Bit 7: 0 - reserved + // Bit 6: 0 - reserved + // Bit 5: 0 - reserved + // Bit 4: 1 - Change USB version + // Bit 3: 1 - Use the serial number string + // Bit 2: 1 - Enable suspend pull downs for lower power + // Bit 1: 1 - Out EndPoint is Isochronous + // Bit 0: 1 - In EndPoint is Isochronous + // + j = 0; + if (eeprom->in_is_isochronous == 1) + j = j | 1; + if (eeprom->out_is_isochronous == 1) + j = j | 2; + output[0x0A] = j; + } + + // Dynamic content + // Strings start at 0x94 (TYPE_AM, TYPE_BM) + // 0x96 (TYPE_2232C), 0x98 (TYPE_R) and 0x9a (TYPE_x232H) + i = 0; + switch(ftdi->type) + { + case TYPE_2232H: + case TYPE_4232H: + i += 2; + case TYPE_R: + i += 2; + case TYPE_2232C: + i += 2; + case TYPE_AM: + case TYPE_BM: + i += 0x94; + } + /* Wrap around 0x80 for 128 byte EEPROMS (Internale and 93x46) */ + eeprom_size_mask = eeprom->size -1; + + // Addr 0E: Offset of the manufacturer string + 0x80, calculated later + // Addr 0F: Length of manufacturer string + // Output manufacturer + output[0x0E] = i; // calculate offset + output[i & eeprom_size_mask] = manufacturer_size*2 + 2, i++; + output[i & eeprom_size_mask] = 0x03, i++; // type: string + for (j = 0; j < manufacturer_size; j++) + { + output[i & eeprom_size_mask] = eeprom->manufacturer[j], i++; + output[i & eeprom_size_mask] = 0x00, i++; + } + output[0x0F] = manufacturer_size*2 + 2; + + // Addr 10: Offset of the product string + 0x80, calculated later + // Addr 11: Length of product string + output[0x10] = i | 0x80; // calculate offset + output[i & eeprom_size_mask] = product_size*2 + 2, i++; + output[i & eeprom_size_mask] = 0x03, i++; + for (j = 0; j < product_size; j++) + { + output[i & eeprom_size_mask] = eeprom->product[j], i++; + output[i & eeprom_size_mask] = 0x00, i++; + } + output[0x11] = product_size*2 + 2; + + // Addr 12: Offset of the serial string + 0x80, calculated later + // Addr 13: Length of serial string + output[0x12] = i | 0x80; // calculate offset + output[i & eeprom_size_mask] = serial_size*2 + 2, i++; + output[i & eeprom_size_mask] = 0x03, i++; + for (j = 0; j < serial_size; j++) + { + output[i & eeprom_size_mask] = eeprom->serial[j], i++; + output[i & eeprom_size_mask] = 0x00, i++; + } + output[i & eeprom_size_mask] = 0x02; /* as seen when written with FTD2XX */ + i++; + output[i & eeprom_size_mask] = 0x03; /* as seen when written with FTD2XX */ + i++; + output[i & eeprom_size_mask] = eeprom->is_not_pnp; /* as seen when written with FTD2XX */ + i++; + + output[0x13] = serial_size*2 + 2; + + if(ftdi->type > TYPE_AM) /*use_serial not used in AM devices*/ + { + if (eeprom->use_serial == USE_SERIAL_NUM ) + output[0x0A] |= USE_SERIAL_NUM; + else + output[0x0A] &= ~USE_SERIAL_NUM; + } + /* Fixme: ftd2xx seems to append 0x02, 0x03 and 0x01 for PnP = 0 or 0x00 else */ + // calculate checksum + + /* Bytes and Bits specific to (some) types + Write linear, as this allows easier fixing*/ + switch(ftdi->type) + { + case TYPE_AM: + break; + case TYPE_BM: + output[0x0C] = eeprom->usb_version & 0xff; + output[0x0D] = (eeprom->usb_version>>8) & 0xff; + output[0x14] = eeprom->chip; + break; + case TYPE_2232C: + + output[0x00] = (eeprom->channel_a_type); + if ( eeprom->channel_a_driver == DRIVER_VCP) + output[0x00] |= DRIVER_VCP; + else + output[0x00] &= ~DRIVER_VCP; + + if ( eeprom->high_current_a == HIGH_CURRENT_DRIVE) + output[0x00] |= HIGH_CURRENT_DRIVE; + else + output[0x00] &= ~HIGH_CURRENT_DRIVE; + + output[0x01] = (eeprom->channel_b_type); + if ( eeprom->channel_b_driver == DRIVER_VCP) + output[0x01] |= DRIVER_VCP; + else + output[0x01] &= ~DRIVER_VCP; + + if ( eeprom->high_current_b == HIGH_CURRENT_DRIVE) + output[0x01] |= HIGH_CURRENT_DRIVE; + else + output[0x01] &= ~HIGH_CURRENT_DRIVE; + + if (eeprom->in_is_isochronous == 1) + output[0x0A] |= 0x1; + else + output[0x0A] &= ~0x1; + if (eeprom->out_is_isochronous == 1) + output[0x0A] |= 0x2; + else + output[0x0A] &= ~0x2; + if (eeprom->suspend_pull_downs == 1) + output[0x0A] |= 0x4; + else + output[0x0A] &= ~0x4; + output[0x0C] = eeprom->usb_version & 0xff; + output[0x0D] = (eeprom->usb_version>>8) & 0xff; + output[0x14] = eeprom->chip; + break; + case TYPE_R: + if(eeprom->high_current == HIGH_CURRENT_DRIVE_R) + output[0x00] |= HIGH_CURRENT_DRIVE_R; + output[0x01] = 0x40; /* Hard coded Endpoint Size*/ + + if (eeprom->suspend_pull_downs == 1) + output[0x0A] |= 0x4; + else + output[0x0A] &= ~0x4; + output[0x0B] = eeprom->invert; + output[0x0C] = eeprom->usb_version & 0xff; + output[0x0D] = (eeprom->usb_version>>8) & 0xff; + + if(eeprom->cbus_function[0] > CBUS_BB) + output[0x14] = CBUS_TXLED; + else + output[0x14] = eeprom->cbus_function[0]; + + if(eeprom->cbus_function[1] > CBUS_BB) + output[0x14] |= CBUS_RXLED<<4; + else + output[0x14] |= eeprom->cbus_function[1]<<4; + + if(eeprom->cbus_function[2] > CBUS_BB) + output[0x15] = CBUS_TXDEN; + else + output[0x15] = eeprom->cbus_function[2]; + + if(eeprom->cbus_function[3] > CBUS_BB) + output[0x15] |= CBUS_PWREN<<4; + else + output[0x15] |= eeprom->cbus_function[3]<<4; + + if(eeprom->cbus_function[4] > CBUS_CLK6) + output[0x16] = CBUS_SLEEP; + else + output[0x16] = eeprom->cbus_function[4]; + break; + case TYPE_2232H: + output[0x00] = (eeprom->channel_a_type); + if ( eeprom->channel_a_driver == DRIVER_VCP) + output[0x00] |= DRIVER_VCP; + else + output[0x00] &= ~DRIVER_VCP; + + output[0x01] = (eeprom->channel_b_type); + if ( eeprom->channel_b_driver == DRIVER_VCP) + output[0x01] |= DRIVER_VCP; + else + output[0x01] &= ~DRIVER_VCP; + if(eeprom->suspend_dbus7 == SUSPEND_DBUS7) + output[0x01] |= SUSPEND_DBUS7; + else + output[0x01] &= ~SUSPEND_DBUS7; + + if (eeprom->suspend_pull_downs == 1) + output[0x0A] |= 0x4; + else + output[0x0A] &= ~0x4; + + if(eeprom->group0_drive > DRIVE_16MA) + output[0x0c] |= DRIVE_16MA; + else + output[0x0c] |= eeprom->group0_drive; + if (eeprom->group0_schmitt == IS_SCHMITT) + output[0x0c] |= IS_SCHMITT; + if (eeprom->group0_slew == SLOW_SLEW) + output[0x0c] |= SLOW_SLEW; + + if(eeprom->group1_drive > DRIVE_16MA) + output[0x0c] |= DRIVE_16MA<<4; + else + output[0x0c] |= eeprom->group1_drive<<4; + if (eeprom->group1_schmitt == IS_SCHMITT) + output[0x0c] |= IS_SCHMITT<<4; + if (eeprom->group1_slew == SLOW_SLEW) + output[0x0c] |= SLOW_SLEW<<4; + + if(eeprom->group2_drive > DRIVE_16MA) + output[0x0d] |= DRIVE_16MA; + else + output[0x0d] |= eeprom->group2_drive; + if (eeprom->group2_schmitt == IS_SCHMITT) + output[0x0d] |= IS_SCHMITT; + if (eeprom->group2_slew == SLOW_SLEW) + output[0x0d] |= SLOW_SLEW; + + if(eeprom->group3_drive > DRIVE_16MA) + output[0x0d] |= DRIVE_16MA<<4; + else + output[0x0d] |= eeprom->group3_drive<<4; + if (eeprom->group3_schmitt == IS_SCHMITT) + output[0x0d] |= IS_SCHMITT<<4; + if (eeprom->group3_slew == SLOW_SLEW) + output[0x0d] |= SLOW_SLEW<<4; + + output[0x18] = eeprom->chip; + + break; + case TYPE_4232H: + fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n"); + } + + // calculate checksum + checksum = 0xAAAA; + + for (i = 0; i < eeprom->size/2-1; i++) + { + value = output[i*2]; + value += output[(i*2)+1] << 8; + + checksum = value^checksum; + checksum = (checksum << 1) | (checksum >> 15); + } + + output[eeprom->size-2] = checksum; + output[eeprom->size-1] = checksum >> 8; + + return size_check; +} + +/** + Decode binary EEPROM image into an ftdi_eeprom structure. + + \param ftdi pointer to ftdi_context + \param verbose Decode EEPROM on stdout + + \retval 0: all fine + \retval -1: something went wrong + + FIXME: How to pass size? How to handle size field in ftdi_eeprom? + FIXME: Strings are malloc'ed here and should be freed somewhere +*/ +int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose) +{ + unsigned char i, j; + unsigned short checksum, eeprom_checksum, value; + unsigned char manufacturer_size = 0, product_size = 0, serial_size = 0; + int eeprom_size; + struct ftdi_eeprom *eeprom; + unsigned char *buf = ftdi->eeprom->buf; + int release; + + if (ftdi == NULL) + ftdi_error_return(-1,"No context"); + if (ftdi->eeprom == NULL) + ftdi_error_return(-1,"No eeprom structure"); + + eeprom = ftdi->eeprom; + eeprom_size = eeprom->size; + + // Addr 02: Vendor ID + eeprom->vendor_id = buf[0x02] + (buf[0x03] << 8); + + // Addr 04: Product ID + eeprom->product_id = buf[0x04] + (buf[0x05] << 8); + + release = buf[0x06] + (buf[0x07]<<8); + + // Addr 08: Config descriptor + // Bit 7: always 1 + // Bit 6: 1 if this device is self powered, 0 if bus powered + // Bit 5: 1 if this device uses remote wakeup + eeprom->self_powered = buf[0x08] & 0x40; + eeprom->remote_wakeup = buf[0x08] & 0x20;; + + // Addr 09: Max power consumption: max power = value * 2 mA + eeprom->max_power = buf[0x09]; // Addr 0A: Chip configuration // Bit 7: 0 - reserved // Bit 6: 0 - reserved // Bit 5: 0 - reserved // Bit 4: 1 - Change USB version + // Not seen on FT2232(D) // Bit 3: 1 - Use the serial number string // Bit 2: 1 - Enable suspend pull downs for lower power // Bit 1: 1 - Out EndPoint is Isochronous // Bit 0: 1 - In EndPoint is Isochronous // - j = 0; - if (eeprom->in_is_isochronous == 1) - j = j | 1; - if (eeprom->out_is_isochronous == 1) - j = j | 2; - if (eeprom->suspend_pull_downs == 1) - j = j | 4; - if (eeprom->use_serial == 1) - j = j | 8; - if (eeprom->change_usb_version == 1) - j = j | 16; - output[0x0A] = j; + eeprom->in_is_isochronous = buf[0x0A]&0x01; + eeprom->out_is_isochronous = buf[0x0A]&0x02; + eeprom->suspend_pull_downs = buf[0x0A]&0x04; + eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM; + if(buf[0x0A]&0x10) + fprintf(stderr, + "EEPROM byte[0x0a] Bit 4 unexpected set. If this happened with the EEPROM\n" + "programmed by FTDI tools, please report to libftdi@developer.intra2net.com\n"); - // Addr 0B: reserved - output[0x0B] = 0x00; - // Addr 0C: USB version low byte when 0x0A bit 4 is set - // Addr 0D: USB version high byte when 0x0A bit 4 is set - if (eeprom->change_usb_version == 1) { - output[0x0C] = eeprom->usb_version; - output[0x0D] = eeprom->usb_version >> 8; - } - - - // Addr 0E: Offset of the manufacturer string + 0x80 - output[0x0E] = 0x14 + 0x80; + // Addr 0C: USB version low byte when 0x0A + // Addr 0D: USB version high byte when 0x0A + eeprom->usb_version = buf[0x0C] + (buf[0x0D] << 8); + // Addr 0E: Offset of the manufacturer string + 0x80, calculated later // Addr 0F: Length of manufacturer string - output[0x0F] = manufacturer_size*2 + 2; + manufacturer_size = buf[0x0F]/2; + if(eeprom->manufacturer) + free(eeprom->manufacturer); + if (manufacturer_size > 0) + { + eeprom->manufacturer = malloc(manufacturer_size); + if (eeprom->manufacturer) + { + // Decode manufacturer + i = buf[0x0E] & (eeprom_size -1); // offset + for (j=0;jmanufacturer[j] = buf[2*j+i+2]; + } + eeprom->manufacturer[j] = '\0'; + } + } + else eeprom->manufacturer = NULL; // Addr 10: Offset of the product string + 0x80, calculated later // Addr 11: Length of product string - output[0x11] = product_size*2 + 2; + if(eeprom->product) + free(eeprom->product); + product_size = buf[0x11]/2; + if (product_size > 0) + { + eeprom->product = malloc(product_size); + if(eeprom->product) + { + // Decode product name + i = buf[0x10] & (eeprom_size -1); // offset + for (j=0;jproduct[j] = buf[2*j+i+2]; + } + eeprom->product[j] = '\0'; + } + } + else eeprom->product = NULL; // Addr 12: Offset of the serial string + 0x80, calculated later // Addr 13: Length of serial string - output[0x13] = serial_size*2 + 2; + if(eeprom->serial) + free(eeprom->serial); + serial_size = buf[0x13]/2; + if (serial_size > 0) + { + eeprom->serial = malloc(serial_size); + if(eeprom->serial) + { + // Decode serial + i = buf[0x12] & (eeprom_size -1); // offset + for (j=0;jserial[j] = buf[2*j+i+2]; + } + eeprom->serial[j] = '\0'; + } + } + else eeprom->serial = NULL; - // Dynamic content - output[0x14] = manufacturer_size*2 + 2; - output[0x15] = 0x03; // type: string + // verify checksum + checksum = 0xAAAA; - i = 0x16, j = 0; + for (i = 0; i < eeprom_size/2-1; i++) + { + value = buf[i*2]; + value += buf[(i*2)+1] << 8; - // Output manufacturer - for (j = 0; j < manufacturer_size; j++) { - output[i] = eeprom->manufacturer[j], i++; - output[i] = 0x00, i++; + checksum = value^checksum; + checksum = (checksum << 1) | (checksum >> 15); } - // Output product name - output[0x10] = i + 0x80; // calculate offset - output[i] = product_size*2 + 2, i++; - output[i] = 0x03, i++; - for (j = 0; j < product_size; j++) { - output[i] = eeprom->product[j], i++; - output[i] = 0x00, i++; + eeprom_checksum = buf[eeprom_size-2] + (buf[eeprom_size-1] << 8); + + if (eeprom_checksum != checksum) + { + fprintf(stderr, "Checksum Error: %04x %04x\n", checksum, eeprom_checksum); + ftdi_error_return(-1,"EEPROM checksum error"); } - // Output serial - output[0x12] = i + 0x80; // calculate offset - output[i] = serial_size*2 + 2, i++; - output[i] = 0x03, i++; - for (j = 0; j < serial_size; j++) { - output[i] = eeprom->serial[j], i++; - output[i] = 0x00, i++; + eeprom->channel_a_type = 0; + if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM)) + { + eeprom->chip = -1; } + else if(ftdi->type == TYPE_2232C) + { + eeprom->channel_a_type = buf[0x00] & 0x7; + eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP; + eeprom->high_current_a = buf[0x00] & HIGH_CURRENT_DRIVE; + eeprom->channel_b_type = buf[0x01] & 0x7; + eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP; + eeprom->high_current_b = buf[0x01] & HIGH_CURRENT_DRIVE; + eeprom->chip = buf[0x14]; + } + else if(ftdi->type == TYPE_R) + { + /* TYPE_R flags D2XX, not VCP as all others*/ + eeprom->channel_a_driver = (~buf[0x00]) & DRIVER_VCP; + eeprom->high_current = buf[0x00] & HIGH_CURRENT_DRIVE_R; + if( (buf[0x01]&0x40) != 0x40) + fprintf(stderr, + "TYPE_R EEPROM byte[0x01] Bit 6 unexpected Endpoint size." + " If this happened with the\n" + " EEPROM programmed by FTDI tools, please report " + "to libftdi@developer.intra2net.com\n"); + + eeprom->chip = buf[0x16]; + // Addr 0B: Invert data lines + // Works only on FT232R, not FT245R, but no way to distinguish + eeprom->invert = buf[0x0B]; + // Addr 14: CBUS function: CBUS0, CBUS1 + // Addr 15: CBUS function: CBUS2, CBUS3 + // Addr 16: CBUS function: CBUS5 + eeprom->cbus_function[0] = buf[0x14] & 0x0f; + eeprom->cbus_function[1] = (buf[0x14] >> 4) & 0x0f; + eeprom->cbus_function[2] = buf[0x15] & 0x0f; + eeprom->cbus_function[3] = (buf[0x15] >> 4) & 0x0f; + eeprom->cbus_function[4] = buf[0x16] & 0x0f; + } + else if ((ftdi->type == TYPE_2232H) ||(ftdi->type == TYPE_4232H)) + { + eeprom->channel_a_type = buf[0x00] & 0x7; + eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP; + eeprom->channel_b_type = buf[0x01] & 0x7; + eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP; + + if(ftdi->type == TYPE_2232H) + eeprom->suspend_dbus7 = buf[0x01] & SUSPEND_DBUS7; + + eeprom->chip = buf[0x18]; + eeprom->group0_drive = buf[0x0c] & DRIVE_16MA; + eeprom->group0_schmitt = buf[0x0c] & IS_SCHMITT; + eeprom->group0_slew = buf[0x0c] & SLOW_SLEW; + eeprom->group1_drive = (buf[0x0c] >> 4) & 0x3; + eeprom->group1_schmitt = (buf[0x0c] >> 4) & IS_SCHMITT; + eeprom->group1_slew = (buf[0x0c] >> 4) & SLOW_SLEW; + eeprom->group2_drive = buf[0x0d] & DRIVE_16MA; + eeprom->group2_schmitt = buf[0x0d] & IS_SCHMITT; + eeprom->group2_slew = buf[0x0d] & SLOW_SLEW; + eeprom->group3_drive = (buf[0x0d] >> 4) & DRIVE_16MA; + eeprom->group3_schmitt = (buf[0x0d] >> 4) & IS_SCHMITT; + eeprom->group3_slew = (buf[0x0d] >> 4) & SLOW_SLEW; + } + + if(verbose) + { + char *channel_mode[] = {"UART","245","CPU", "unknown", "OPTO"}; + fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id); + fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id); + fprintf(stdout, "Release: 0x%04x\n",release); + + if(eeprom->self_powered) + fprintf(stdout, "Self-Powered%s", (eeprom->remote_wakeup)?", USB Remote Wake Up\n":"\n"); + else + fprintf(stdout, "Bus Powered: %3d mA%s", eeprom->max_power * 2, + (eeprom->remote_wakeup)?" USB Remote Wake Up\n":"\n"); + if(eeprom->manufacturer) + fprintf(stdout, "Manufacturer: %s\n",eeprom->manufacturer); + if(eeprom->product) + fprintf(stdout, "Product: %s\n",eeprom->product); + if(eeprom->serial) + fprintf(stdout, "Serial: %s\n",eeprom->serial); + fprintf(stdout, "Checksum : %04x\n", checksum); + if (ftdi->type == TYPE_R) + fprintf(stdout, "Internal EEPROM\n"); + else if (eeprom->chip >= 0x46) + fprintf(stdout, "Attached EEPROM: 93x%02x\n", eeprom->chip); + if(eeprom->suspend_dbus7) + fprintf(stdout, "Suspend on DBUS7\n"); + if(eeprom->suspend_pull_downs) + fprintf(stdout, "Pull IO pins low during suspend\n"); + if(eeprom->remote_wakeup) + fprintf(stdout, "Enable Remote Wake Up\n"); + fprintf(stdout, "PNP: %d\n",(eeprom->is_not_pnp)?0:1); + if (ftdi->type >= TYPE_2232C) + fprintf(stdout,"Channel A has Mode %s%s%s\n", + channel_mode[eeprom->channel_a_type], + (eeprom->channel_a_driver)?" VCP":"", + (eeprom->high_current_a)?" High Current IO":""); + if ((ftdi->type >= TYPE_2232C) && (ftdi->type != TYPE_R)) + fprintf(stdout,"Channel B has Mode %s%s%s\n", + channel_mode[eeprom->channel_b_type], + (eeprom->channel_b_driver)?" VCP":"", + (eeprom->high_current_b)?" High Current IO":""); + if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H)) + { + fprintf(stdout,"%s has %d mA drive%s%s\n", + (ftdi->type == TYPE_2232H)?"AL":"A", + (eeprom->group0_drive+1) *4, + (eeprom->group0_schmitt)?" Schmitt Input":"", + (eeprom->group0_slew)?" Slow Slew":""); + fprintf(stdout,"%s has %d mA drive%s%s\n", + (ftdi->type == TYPE_2232H)?"AH":"B", + (eeprom->group1_drive+1) *4, + (eeprom->group1_schmitt)?" Schmitt Input":"", + (eeprom->group1_slew)?" Slow Slew":""); + fprintf(stdout,"%s has %d mA drive%s%s\n", + (ftdi->type == TYPE_2232H)?"BL":"C", + (eeprom->group2_drive+1) *4, + (eeprom->group2_schmitt)?" Schmitt Input":"", + (eeprom->group2_slew)?" Slow Slew":""); + fprintf(stdout,"%s has %d mA drive%s%s\n", + (ftdi->type == TYPE_2232H)?"BH":"D", + (eeprom->group3_drive+1) *4, + (eeprom->group3_schmitt)?" Schmitt Input":"", + (eeprom->group3_slew)?" Slow Slew":""); + } + if (ftdi->type == TYPE_R) + { + char *cbus_mux[] = {"TXDEN","PWREN","RXLED", "TXLED","TX+RXLED", + "SLEEP","CLK48","CLK24","CLK12","CLK6", + "IOMODE","BB_WR","BB_RD"}; + char *cbus_BB[] = {"RXF","TXE","RD", "WR"}; + int i; + + if(eeprom->invert) + { + char *r_bits[] = {"TXD","RXD","RTS", "CTS","DTR","DSR","DCD","RI"}; + fprintf(stdout,"Inverted bits:"); + for (i=0; i<8; i++) + if((eeprom->invert & (1<cbus_function[i]cbus_function[i]]); + else + fprintf(stdout,"C%d BB Function: %s\n", i, + cbus_BB[i]); + } + } + } + return 0; +} - // calculate checksum - checksum = 0xAAAA; +/** + Read eeprom location - for (i = 0; i < 63; i++) { - value = output[i*2]; - value += output[(i*2)+1] << 8; + \param ftdi pointer to ftdi_context + \param eeprom_addr Address of eeprom location to be read + \param eeprom_val Pointer to store read eeprom location - checksum = value^checksum; - checksum = (checksum << 1) | (checksum >> 15); - } + \retval 0: all fine + \retval -1: read failed + \retval -2: USB device unavailable +*/ +int ftdi_read_eeprom_location (struct ftdi_context *ftdi, int eeprom_addr, unsigned short *eeprom_val) +{ + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); - output[0x7E] = checksum; - output[0x7F] = checksum >> 8; + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, eeprom_addr, (unsigned char *)eeprom_val, 2, ftdi->usb_read_timeout) != 2) + ftdi_error_return(-1, "reading eeprom failed"); - return size_check; + return 0; } +/** + Read eeprom + + \param ftdi pointer to ftdi_context -int ftdi_read_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom) + \retval 0: all fine + \retval -1: read failed + \retval -2: USB device unavailable +*/ +int ftdi_read_eeprom(struct ftdi_context *ftdi) { int i; + unsigned char *buf; - for (i = 0; i < 64; i++) { - if (usb_control_msg(ftdi->usb_dev, 0xC0, 0x90, 0, i, eeprom+(i*2), 2, ftdi->usb_read_timeout) != 2) + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + buf = ftdi->eeprom->buf; + + for (i = 0; i < FTDI_MAX_EEPROM_SIZE/2; i++) + { + if (libusb_control_transfer( + ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE,SIO_READ_EEPROM_REQUEST, 0, i, + buf+(i*2), 2, ftdi->usb_read_timeout) != 2) ftdi_error_return(-1, "reading eeprom failed"); } + if (ftdi->type == TYPE_R) + ftdi->eeprom->size = 0x80; + /* Guesses size of eeprom by comparing halves + - will not work with blank eeprom */ + else if (strrchr((const char *)buf, 0xff) == ((const char *)buf +FTDI_MAX_EEPROM_SIZE -1)) + ftdi->eeprom->size = -1; + else if(memcmp(buf,&buf[0x80],0x80) == 0) + ftdi->eeprom->size = 0x80; + else if(memcmp(buf,&buf[0x40],0x40) == 0) + ftdi->eeprom->size = 0x40; + else + ftdi->eeprom->size = 0x100; return 0; } +/* + ftdi_read_chipid_shift does the bitshift operation needed for the FTDIChip-ID + Function is only used internally + \internal +*/ +static unsigned char ftdi_read_chipid_shift(unsigned char value) +{ + return ((value & 1) << 1) | + ((value & 2) << 5) | + ((value & 4) >> 2) | + ((value & 8) << 4) | + ((value & 16) >> 1) | + ((value & 32) >> 1) | + ((value & 64) >> 4) | + ((value & 128) >> 2); +} -int ftdi_write_eeprom(struct ftdi_context *ftdi, unsigned char *eeprom) +/** + Read the FTDIChip-ID from R-type devices + + \param ftdi pointer to ftdi_context + \param chipid Pointer to store FTDIChip-ID + + \retval 0: all fine + \retval -1: read failed + \retval -2: USB device unavailable +*/ +int ftdi_read_chipid(struct ftdi_context *ftdi, unsigned int *chipid) { - unsigned short usb_val; - int i; + unsigned int a = 0, b = 0; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x43, (unsigned char *)&a, 2, ftdi->usb_read_timeout) == 2) + { + a = a << 8 | a >> 8; + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_IN_REQTYPE, SIO_READ_EEPROM_REQUEST, 0, 0x44, (unsigned char *)&b, 2, ftdi->usb_read_timeout) == 2) + { + b = b << 8 | b >> 8; + a = (a << 16) | (b & 0xFFFF); + a = ftdi_read_chipid_shift(a) | ftdi_read_chipid_shift(a>>8)<<8 + | ftdi_read_chipid_shift(a>>16)<<16 | ftdi_read_chipid_shift(a>>24)<<24; + *chipid = a ^ 0xa5f0f7d1; + return 0; + } + } + + ftdi_error_return(-1, "read of FTDIChip-ID failed"); +} + +/** + Write eeprom location + + \param ftdi pointer to ftdi_context + \param eeprom_addr Address of eeprom location to be written + \param eeprom_val Value to be written + + \retval 0: all fine + \retval -1: write failed + \retval -2: USB device unavailable + \retval -3: Invalid access to checksum protected area below 0x80 + \retval -4: Device can't access unprotected area + \retval -5: Reading chip type failed +*/ +int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, + unsigned short eeprom_val) +{ + int chip_type_location; + unsigned short chip_type; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if(eeprom_addr <0x80) + ftdi_error_return(-2, "Invalid access to checksum protected area below 0x80"); + + + switch (ftdi->type) + { + case TYPE_BM: + case TYPE_2232C: + chip_type_location = 0x14; + break; + case TYPE_2232H: + case TYPE_4232H: + chip_type_location = 0x18; + break; + default: + ftdi_error_return(-4, "Device can't access unprotected area"); + } + + if (ftdi_read_eeprom_location( ftdi, chip_type_location>>1, &chip_type)) + ftdi_error_return(-5, "Reading failed failed"); + fprintf(stderr," loc 0x%04x val 0x%04x\n", chip_type_location,chip_type); + if((chip_type & 0xff) != 0x66) + { + ftdi_error_return(-6, "EEPROM is not of 93x66"); + } + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_WRITE_EEPROM_REQUEST, eeprom_val, eeprom_addr, + NULL, 0, ftdi->usb_write_timeout) != 0) + ftdi_error_return(-1, "unable to write eeprom"); - for (i = 0; i < 64; i++) { + return 0; +} + +/** + Write eeprom + + \param ftdi pointer to ftdi_context + + \retval 0: all fine + \retval -1: read failed + \retval -2: USB device unavailable +*/ +int ftdi_write_eeprom(struct ftdi_context *ftdi) +{ + unsigned short usb_val, status; + int i, ret; + unsigned char *eeprom; + + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + eeprom = ftdi->eeprom->buf; + + /* These commands were traced while running MProg */ + if ((ret = ftdi_usb_reset(ftdi)) != 0) + return ret; + if ((ret = ftdi_poll_modem_status(ftdi, &status)) != 0) + return ret; + if ((ret = ftdi_set_latency_timer(ftdi, 0x77)) != 0) + return ret; + + for (i = 0; i < ftdi->eeprom->size/2; i++) + { usb_val = eeprom[i*2]; usb_val += eeprom[(i*2)+1] << 8; - if (usb_control_msg(ftdi->usb_dev, 0x40, 0x91, usb_val, i, NULL, 0, ftdi->usb_write_timeout) != 0) + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_WRITE_EEPROM_REQUEST, usb_val, i, + NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return(-1, "unable to write eeprom"); } return 0; } +/** + Erase eeprom + + This is not supported on FT232R/FT245R according to the MProg manual from FTDI. + + \param ftdi pointer to ftdi_context + \retval 0: all fine + \retval -1: erase failed + \retval -2: USB device unavailable + \retval -3: Writing magic failed + \retval -4: Read EEPROM failed + \retval -5: Unexpected EEPROM value +*/ +#define MAGIC 0x55aa int ftdi_erase_eeprom(struct ftdi_context *ftdi) { - if (usb_control_msg(ftdi->usb_dev, 0x40, 0x92, 0, 0, NULL, 0, ftdi->usb_write_timeout) != 0) + unsigned short eeprom_value; + if (ftdi == NULL || ftdi->usb_dev == NULL) + ftdi_error_return(-2, "USB device unavailable"); + + if(ftdi->type == TYPE_R) + { + ftdi->eeprom->chip = 0; + return 0; + } + + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, + 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0) ftdi_error_return(-1, "unable to erase eeprom"); + + /* detect chip type by writing 0x55AA as magic at word position 0xc0 + Chip is 93x46 if magic is read at word position 0x00, as wraparound happens around 0x40 + Chip is 93x56 if magic is read at word position 0x40, as wraparound happens around 0x80 + Chip is 93x66 if magic is only read at word position 0xc0*/ + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, + SIO_WRITE_EEPROM_REQUEST, MAGIC, 0xc0, + NULL, 0, ftdi->usb_write_timeout) != 0) + ftdi_error_return(-3, "Writing magic failed"); + if (ftdi_read_eeprom_location( ftdi, 0x00, &eeprom_value)) + ftdi_error_return(-4, "Reading failed failed"); + if(eeprom_value == MAGIC) + { + ftdi->eeprom->chip = 0x46; + } + else + { + if (ftdi_read_eeprom_location( ftdi, 0x40, &eeprom_value)) + ftdi_error_return(-4, "Reading failed failed"); + if(eeprom_value == MAGIC) + ftdi->eeprom->chip = 0x56; + else + { + if (ftdi_read_eeprom_location( ftdi, 0xc0, &eeprom_value)) + ftdi_error_return(-4, "Reading failed failed"); + if(eeprom_value == MAGIC) + ftdi->eeprom->chip = 0x66; + else + { + ftdi->eeprom->chip = -1; + } + } + } + if (libusb_control_transfer(ftdi->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_ERASE_EEPROM_REQUEST, + 0, 0, NULL, 0, ftdi->usb_write_timeout) < 0) + ftdi_error_return(-1, "unable to erase eeprom"); return 0; } +/** + Get string representation for last error code + + \param ftdi pointer to ftdi_context + \retval Pointer to error string +*/ char *ftdi_get_error_string (struct ftdi_context *ftdi) { + if (ftdi == NULL) + return ""; + return ftdi->error_str; } + +/* @} end of doxygen libftdi group */