X-Git-Url: http://developer.intra2net.com/git/?p=libftdi;a=blobdiff_plain;f=src%2Fftdi.c;h=0c8d54000a66cd19e8588f2916a341daebdf52f1;hp=4cff47ca5451b5b1b5004f76d135feb821953a27;hb=9956d4289d04f1c67a8738a7b8b32e1345ab0968;hpb=26063beccb19527833b2d23877d61b56527b9985 diff --git a/src/ftdi.c b/src/ftdi.c index 4cff47c..0c8d540 100644 --- a/src/ftdi.c +++ b/src/ftdi.c @@ -63,6 +63,8 @@ static void ftdi_usb_close_internal (struct ftdi_context *ftdi) { libusb_close (ftdi->usb_dev); ftdi->usb_dev = NULL; + if(ftdi->eeprom) + ftdi->eeprom->initialized_for_connected_device = 0; } } @@ -257,8 +259,10 @@ void ftdi_set_usbdev (struct ftdi_context *ftdi, libusb_device_handle *usb) /** - Finds all ftdi devices on the usb bus. Creates a new ftdi_device_list which - needs to be deallocated by ftdi_list_free() after use. + Finds all ftdi devices with given VID:PID on the usb bus. Creates a new + ftdi_device_list which needs to be deallocated by ftdi_list_free() after + use. With VID:PID 0:0, search for the default devices + (0x403:0x6001, 0x403:0x6010, 0x403:0x6011, 0x403:0x6014) \param ftdi pointer to ftdi_context \param devlist Pointer where to store list of found devices @@ -291,7 +295,11 @@ int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devli if (libusb_get_device_descriptor(dev, &desc) < 0) ftdi_error_return_free_device_list(-6, "libusb_get_device_descriptor() failed", devs); - if (desc.idVendor == vendor && desc.idProduct == product) + if (((vendor != 0 && product != 0) && + desc.idVendor == vendor && desc.idProduct == product) || + ((vendor == 0 && product == 0) && + (desc.idVendor == 0x403) && (desc.idProduct == 0x6001 || desc.idProduct == 0x6010 + || desc.idProduct == 0x6011 || desc.idProduct == 0x6014))) { *curdev = (struct ftdi_device_list*)malloc(sizeof(struct ftdi_device_list)); if (!*curdev) @@ -299,7 +307,7 @@ int ftdi_usb_find_all(struct ftdi_context *ftdi, struct ftdi_device_list **devli (*curdev)->next = NULL; (*curdev)->dev = dev; - + libusb_ref_device(dev); curdev = &(*curdev)->next; count++; } @@ -320,6 +328,7 @@ void ftdi_list_free(struct ftdi_device_list **devlist) for (curdev = *devlist; curdev != NULL;) { next = curdev->next; + libusb_unref_device(curdev->dev); free(curdev); curdev = next; } @@ -611,7 +620,6 @@ int ftdi_usb_open(struct ftdi_context *ftdi, int vendor, int product) \retval -7: set baudrate failed \retval -8: get product description failed \retval -9: get serial number failed - \retval -11: libusb_init() failed \retval -12: libusb_get_device_list() failed \retval -13: libusb_get_device_descriptor() failed */ @@ -656,9 +664,6 @@ int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product, if (ftdi == NULL) ftdi_error_return(-11, "ftdi context invalid"); - if (libusb_init(&ftdi->usb_ctx) < 0) - ftdi_error_return(-11, "libusb_init() failed"); - if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0) ftdi_error_return(-12, "libusb_get_device_list() failed"); @@ -734,7 +739,6 @@ int ftdi_usb_open_desc_index(struct ftdi_context *ftdi, int vendor, int product, \note The description format may be extended in later versions. \retval 0: all fine - \retval -1: libusb_init() failed \retval -2: libusb_get_device_list() failed \retval -3: usb device not found \retval -4: unable to open device @@ -762,9 +766,6 @@ int ftdi_usb_open_string(struct ftdi_context *ftdi, const char* description) unsigned int bus_number, device_address; int i = 0; - if (libusb_init (&ftdi->usb_ctx) < 0) - ftdi_error_return(-1, "libusb_init() failed"); - if (libusb_get_device_list(ftdi->usb_ctx, &devs) < 0) ftdi_error_return(-2, "libusb_get_device_list() failed"); @@ -963,34 +964,30 @@ int ftdi_usb_close(struct ftdi_context *ftdi) return rtn; } -/** - ftdi_convert_baudrate returns nearest supported baud rate to that requested. +/* ftdi_to_clkbits_AM For the AM device, convert a requested baudrate + to encoded divisor and the achievable baudrate Function is only used internally \internal + + See AN120 + clk/1 -> 0 + clk/1.5 -> 1 + clk/2 -> 2 + From /2, 0.125/ 0.25 and 0.5 steps may be taken + The fractional part has frac_code encoding */ -static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, - unsigned short *value, unsigned short *index) +static int ftdi_to_clkbits_AM(int baudrate, unsigned long *encoded_divisor) + { + static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7}; static const char am_adjust_up[8] = {0, 0, 0, 1, 0, 3, 2, 1}; static const char am_adjust_dn[8] = {0, 0, 0, 1, 0, 1, 2, 3}; - static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7}; int divisor, best_divisor, best_baud, best_baud_diff; - unsigned long encoded_divisor; - int i; - - if (baudrate <= 0) - { - // Return error - return -1; - } - divisor = 24000000 / baudrate; + int i; - if (ftdi->type == TYPE_AM) - { - // Round down to supported fraction (AM only) - divisor -= am_adjust_dn[divisor & 7]; - } + // Round down to supported fraction (AM only) + divisor -= am_adjust_dn[divisor & 7]; // Try this divisor and the one above it (because division rounds down) best_divisor = 0; @@ -1008,11 +1005,6 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, // Round up to minimum supported divisor try_divisor = 8; } - else if (ftdi->type != TYPE_AM && try_divisor < 12) - { - // BM doesn't support divisors 9 through 11 inclusive - try_divisor = 12; - } else if (divisor < 16) { // AM doesn't support divisors 9 through 15 inclusive @@ -1020,23 +1012,12 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, } else { - if (ftdi->type == TYPE_AM) - { - // Round up to supported fraction (AM only) - try_divisor += am_adjust_up[try_divisor & 7]; - if (try_divisor > 0x1FFF8) - { - // Round down to maximum supported divisor value (for AM) - try_divisor = 0x1FFF8; - } - } - else + // Round up to supported fraction (AM only) + try_divisor += am_adjust_up[try_divisor & 7]; + if (try_divisor > 0x1FFF8) { - if (try_divisor > 0x1FFFF) - { - // Round down to maximum supported divisor value (for BM) - try_divisor = 0x1FFFF; - } + // Round down to maximum supported divisor value (for AM) + try_divisor = 0x1FFF8; } } // Get estimated baud rate (to nearest integer) @@ -1064,19 +1045,124 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, } } // Encode the best divisor value - encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14); + *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 7] << 14); // Deal with special cases for encoded value - if (encoded_divisor == 1) + if (*encoded_divisor == 1) { - encoded_divisor = 0; // 3000000 baud + *encoded_divisor = 0; // 3000000 baud } - else if (encoded_divisor == 0x4001) + else if (*encoded_divisor == 0x4001) { - encoded_divisor = 1; // 2000000 baud (BM only) + *encoded_divisor = 1; // 2000000 baud (BM only) + } + return best_baud; +} + +/* ftdi_to_clkbits Convert a requested baudrate for a given system clock and predivisor + to encoded divisor and the achievable baudrate + Function is only used internally + \internal + + See AN120 + clk/1 -> 0 + clk/1.5 -> 1 + clk/2 -> 2 + From /2, 0.125 steps may be taken. + The fractional part has frac_code encoding + + value[13:0] of value is the divisor + index[9] mean 12 MHz Base(120 MHz/10) rate versus 3 MHz (48 MHz/16) else + + H Type have all features above with + {index[8],value[15:14]} is the encoded subdivisor + + FT232R, FT2232 and FT232BM have no option for 12 MHz and with + {index[0],value[15:14]} is the encoded subdivisor + + AM Type chips have only four fractional subdivisors at value[15:14] + for subdivisors 0, 0.5, 0.25, 0.125 +*/ +static int ftdi_to_clkbits(int baudrate, unsigned int clk, int clk_div, unsigned long *encoded_divisor) +{ + static const char frac_code[8] = {0, 3, 2, 4, 1, 5, 6, 7}; + int best_baud = 0; + int divisor, best_divisor; + if (baudrate >= clk/clk_div) + { + *encoded_divisor = 0; + best_baud = clk/clk_div; + } + else if (baudrate >= clk/(clk_div + clk_div/2)) + { + *encoded_divisor = 1; + best_baud = clk/(clk_div + clk_div/2); + } + else if (baudrate >= clk/(2*clk_div)) + { + *encoded_divisor = 2; + best_baud = clk/(2*clk_div); + } + else + { + /* We divide by 16 to have 3 fractional bits and one bit for rounding */ + divisor = clk*16/clk_div / baudrate; + if (divisor & 1) /* Decide if to round up or down*/ + best_divisor = divisor /2 +1; + else + best_divisor = divisor/2; + if(best_divisor > 0x20000) + best_divisor = 0x1ffff; + best_baud = clk*8/clk_div/best_divisor; + *encoded_divisor = (best_divisor >> 3) | (frac_code[best_divisor & 0x7] << 14); + } + return best_baud; +} +/** + ftdi_convert_baudrate returns nearest supported baud rate to that requested. + Function is only used internally + \internal +*/ +static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, + unsigned short *value, unsigned short *index) +{ + int best_baud; + unsigned long encoded_divisor; + + if (baudrate <= 0) + { + // Return error + return -1; + } + +#define H_CLK 120000000 +#define C_CLK 48000000 + if ((ftdi->type == TYPE_2232H) || (ftdi->type == TYPE_4232H) || (ftdi->type == TYPE_232H )) + { + if(baudrate*10 > H_CLK /0x3fff) + { + /* On H Devices, use 12 000 000 Baudrate when possible + We have a 14 bit divisor, a 1 bit divisor switch (10 or 16) + three fractional bits and a 120 MHz clock + Assume AN_120 "Sub-integer divisors between 0 and 2 are not allowed" holds for + DIV/10 CLK too, so /1, /1.5 and /2 can be handled the same*/ + best_baud = ftdi_to_clkbits(baudrate, H_CLK, 10, &encoded_divisor); + encoded_divisor |= 0x20000; /* switch on CLK/10*/ + } + else + best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor); + } + else if ((ftdi->type == TYPE_BM) || (ftdi->type == TYPE_2232C) || (ftdi->type == TYPE_R )) + { + best_baud = ftdi_to_clkbits(baudrate, C_CLK, 16, &encoded_divisor); + } + else + { + best_baud = ftdi_to_clkbits_AM(baudrate, &encoded_divisor); } // Split into "value" and "index" values *value = (unsigned short)(encoded_divisor & 0xFFFF); - if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || ftdi->type == TYPE_4232H) + if (ftdi->type == TYPE_2232C || ftdi->type == TYPE_2232H || + ftdi->type == TYPE_4232H || ftdi->type == TYPE_232H ) { *index = (unsigned short)(encoded_divisor >> 8); *index &= 0xFF00; @@ -1090,6 +1176,16 @@ static int ftdi_convert_baudrate(int baudrate, struct ftdi_context *ftdi, } /** + * @brief Wrapper function to export ftdi_convert_baudrate() to the unit test + * Do not use, it's only for the unit test framework + **/ +int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi, + unsigned short *value, unsigned short *index) +{ + return ftdi_convert_baudrate(baudrate, ftdi, value, index); +} + +/** Sets the chip baud rate \param ftdi pointer to ftdi_context @@ -2178,7 +2274,7 @@ int ftdi_set_error_char(struct ftdi_context *ftdi, } /** - Init eeprom with default values. + Init eeprom with default values for the connected device \param ftdi pointer to ftdi_context \param manufacturer String to use as Manufacturer \param product String to use as Product description @@ -2187,6 +2283,7 @@ int ftdi_set_error_char(struct ftdi_context *ftdi, \retval 0: all fine \retval -1: No struct ftdi_context \retval -2: No struct ftdi_eeprom + \retval -3: No connected device or device not yet opened */ int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer, char * product, char * serial) @@ -2202,8 +2299,11 @@ int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer, eeprom = ftdi->eeprom; memset(eeprom, 0, sizeof(struct ftdi_eeprom)); + if (ftdi->usb_dev == NULL) + ftdi_error_return(-3, "No connected device or device not yet opened"); + eeprom->vendor_id = 0x0403; - eeprom->use_serial = USE_SERIAL_NUM; + eeprom->use_serial = 1; if ((ftdi->type == TYPE_AM) || (ftdi->type == TYPE_BM) || (ftdi->type == TYPE_R)) eeprom->product_id = 0x6001; @@ -2238,6 +2338,25 @@ int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer, if (eeprom->product) strcpy(eeprom->product, product); } + else + { + const char* default_product; + switch(ftdi->type) + { + case TYPE_AM: default_product = "AM"; break; + case TYPE_BM: default_product = "BM"; break; + case TYPE_2232C: default_product = "Dual RS232"; break; + case TYPE_R: default_product = "FT232R USB UART"; break; + case TYPE_2232H: default_product = "Dual RS232-HS"; break; + case TYPE_4232H: default_product = "FT4232H"; break; + case TYPE_232H: default_product = "Single-RS232-HS"; break; + default: + ftdi_error_return(-3, "Unknown chip type"); + } + eeprom->product = malloc(strlen(default_product) +1); + if (eeprom->product) + strcpy(eeprom->product, default_product); + } if (eeprom->serial) free (eeprom->serial); @@ -2270,6 +2389,7 @@ int ftdi_eeprom_initdefaults(struct ftdi_context *ftdi, char * manufacturer, } eeprom->size = -1; } + eeprom->initialized_for_connected_device = 1; return 0; } /*FTD2XX doesn't check for values not fitting in the ACBUS Signal oprtions*/ @@ -2291,6 +2411,42 @@ void set_ft232h_cbus(struct ftdi_eeprom *eeprom, unsigned char * output) output[0x18+i] = mode_high <<4 | mode_low; } } +/* Return the bits for the encoded EEPROM Structure of a requested Mode + * + */ +static unsigned char type2bit(unsigned char type, enum ftdi_chip_type chip) +{ + switch (chip) + { + case TYPE_2232H: + case TYPE_2232C: + { + switch (type) + { + case CHANNEL_IS_UART: return 0; + case CHANNEL_IS_FIFO: return 0x01; + case CHANNEL_IS_OPTO: return 0x02; + case CHANNEL_IS_CPU : return 0x04; + default: return 0; + } + } + case TYPE_232H: + { + switch (type) + { + case CHANNEL_IS_UART : return 0; + case CHANNEL_IS_FIFO : return 0x01; + case CHANNEL_IS_OPTO : return 0x02; + case CHANNEL_IS_CPU : return 0x04; + case CHANNEL_IS_FT1284 : return 0x08; + default: return 0; + } + } + default: return 0; + } + return 0; +} + /** Build binary buffer from ftdi_eeprom structure. Output is suitable for ftdi_write_eeprom(). @@ -2354,6 +2510,9 @@ int ftdi_eeprom_build(struct ftdi_context *ftdi) case TYPE_4232H: user_area_size = 86; break; + case TYPE_232H: + user_area_size = 80; + break; default: user_area_size = 0; break; @@ -2514,7 +2673,7 @@ int ftdi_eeprom_build(struct ftdi_context *ftdi) if (ftdi->type > TYPE_AM) /* use_serial not used in AM devices */ { - if (eeprom->use_serial == USE_SERIAL_NUM ) + if (eeprom->use_serial) output[0x0A] |= USE_SERIAL_NUM; else output[0x0A] &= ~USE_SERIAL_NUM; @@ -2537,7 +2696,7 @@ int ftdi_eeprom_build(struct ftdi_context *ftdi) break; case TYPE_2232C: - output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0; + output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232C); if ( eeprom->channel_a_driver == DRIVER_VCP) output[0x00] |= DRIVER_VCP; else @@ -2548,7 +2707,7 @@ int ftdi_eeprom_build(struct ftdi_context *ftdi) else output[0x00] &= ~HIGH_CURRENT_DRIVE; - output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0; + output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232C); if ( eeprom->channel_b_driver == DRIVER_VCP) output[0x01] |= DRIVER_VCP; else @@ -2619,13 +2778,13 @@ int ftdi_eeprom_build(struct ftdi_context *ftdi) output[0x16] = eeprom->cbus_function[4]; break; case TYPE_2232H: - output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0x7):0; + output[0x00] = type2bit(eeprom->channel_a_type, TYPE_2232H); if ( eeprom->channel_a_driver == DRIVER_VCP) output[0x00] |= DRIVER_VCP; else output[0x00] &= ~DRIVER_VCP; - output[0x01] = (eeprom->channel_b_type)?((1<<(eeprom->channel_b_type)) & 0x7):0; + output[0x01] = type2bit(eeprom->channel_b_type, TYPE_2232H); if ( eeprom->channel_b_driver == DRIVER_VCP) output[0x01] |= DRIVER_VCP; else @@ -2684,7 +2843,7 @@ int ftdi_eeprom_build(struct ftdi_context *ftdi) fprintf(stderr,"FIXME: Build FT4232H specific EEPROM settings\n"); break; case TYPE_232H: - output[0x00] = (eeprom->channel_a_type)?((1<<(eeprom->channel_a_type)) & 0xf):0; + output[0x00] = type2bit(eeprom->channel_a_type, TYPE_232H); if ( eeprom->channel_a_driver == DRIVER_VCP) output[0x00] |= DRIVER_VCPH; else @@ -2748,23 +2907,26 @@ int ftdi_eeprom_build(struct ftdi_context *ftdi) return user_area_size; } -/* FTD2XX doesn't allow to set multiple bits in the interface mode bitfield*/ -unsigned char bit2type(unsigned char bits) +/* Decode the encoded EEPROM field for the FTDI Mode into a value for the abstracted + * EEPROM structure + * + * FTD2XX doesn't allow to set multiple bits in the interface mode bitfield, and so do we + */ +static unsigned char bit2type(unsigned char bits) { switch (bits) { - case 0: return 0; - case 1: return 1; - case 2: return 2; - case 4: return 3; - case 8: return 4; + case 0: return CHANNEL_IS_UART; + case 1: return CHANNEL_IS_FIFO; + case 2: return CHANNEL_IS_OPTO; + case 4: return CHANNEL_IS_CPU; + case 8: return CHANNEL_IS_FT1284; default: fprintf(stderr," Unexpected value %d for Hardware Interface type\n", bits); } return 0; } - /** Decode binary EEPROM image into an ftdi_eeprom structure. @@ -2826,7 +2988,7 @@ int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose) eeprom->in_is_isochronous = buf[0x0A]&0x01; eeprom->out_is_isochronous = buf[0x0A]&0x02; eeprom->suspend_pull_downs = buf[0x0A]&0x04; - eeprom->use_serial = buf[0x0A] & USE_SERIAL_NUM; + eeprom->use_serial = (buf[0x0A] & USE_SERIAL_NUM)?1:0; eeprom->use_usb_version = buf[0x0A] & USE_USB_VERSION_BIT; // Addr 0C: USB version low byte when 0x0A @@ -2960,7 +3122,7 @@ int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose) { eeprom->channel_a_type = bit2type(buf[0x00] & 0x7); eeprom->channel_a_driver = buf[0x00] & DRIVER_VCP; - eeprom->channel_b_type = buf[0x01] & 0x7; + eeprom->channel_b_type = bit2type(buf[0x01] & 0x7); eeprom->channel_b_driver = buf[0x01] & DRIVER_VCP; if (ftdi->type == TYPE_2232H) @@ -3008,7 +3170,7 @@ int ftdi_eeprom_decode(struct ftdi_context *ftdi, int verbose) if (verbose) { - char *channel_mode[] = {"UART","245","CPU", "OPTO", "FT1284"}; + char *channel_mode[] = {"UART", "FIFO", "CPU", "OPTO", "FT1284"}; fprintf(stdout, "VID: 0x%04x\n",eeprom->vendor_id); fprintf(stdout, "PID: 0x%04x\n",eeprom->product_id); fprintf(stdout, "Release: 0x%04x\n",release); @@ -3182,6 +3344,9 @@ int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value valu case IN_IS_ISOCHRONOUS: *value = ftdi->eeprom->in_is_isochronous; break; + case OUT_IS_ISOCHRONOUS: + *value = ftdi->eeprom->out_is_isochronous; + break; case SUSPEND_PULL_DOWNS: *value = ftdi->eeprom->suspend_pull_downs; break; @@ -3191,6 +3356,9 @@ int ftdi_get_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value valu case USB_VERSION: *value = ftdi->eeprom->usb_version; break; + case USE_USB_VERSION: + *value = ftdi->eeprom->use_usb_version; + break; case MAX_POWER: *value = ftdi->eeprom->max_power; break; @@ -3345,6 +3513,9 @@ int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value valu case IN_IS_ISOCHRONOUS: ftdi->eeprom->in_is_isochronous = value; break; + case OUT_IS_ISOCHRONOUS: + ftdi->eeprom->out_is_isochronous = value; + break; case SUSPEND_PULL_DOWNS: ftdi->eeprom->suspend_pull_downs = value; break; @@ -3354,6 +3525,9 @@ int ftdi_set_eeprom_value(struct ftdi_context *ftdi, enum ftdi_eeprom_value valu case USB_VERSION: ftdi->eeprom->usb_version = value; break; + case USE_USB_VERSION: + ftdi->eeprom->use_usb_version = value; + break; case MAX_POWER: ftdi->eeprom->max_power = value; break; @@ -3497,6 +3671,29 @@ int ftdi_get_eeprom_buf(struct ftdi_context *ftdi, unsigned char * buf, int size return 0; } +/** Set the EEPROM content from the user-supplied prefilled buffer + + \param ftdi pointer to ftdi_context + \param buf buffer to read EEPROM content + \param size Size of buffer + + \retval 0: All fine + \retval -1: struct ftdi_contxt or ftdi_eeprom of buf missing +*/ +int ftdi_set_eeprom_buf(struct ftdi_context *ftdi, const unsigned char * buf, int size) +{ + if (!ftdi || !(ftdi->eeprom) || !buf) + ftdi_error_return(-1, "No appropriate structure"); + + // Only copy up to FTDI_MAX_EEPROM_SIZE bytes + if (size > FTDI_MAX_EEPROM_SIZE) + size = FTDI_MAX_EEPROM_SIZE; + + memcpy(ftdi->eeprom->buf, buf, size); + + return 0; +} + /** Read eeprom location @@ -3679,6 +3876,7 @@ int ftdi_write_eeprom_location(struct ftdi_context *ftdi, int eeprom_addr, \retval 0: all fine \retval -1: read failed \retval -2: USB device unavailable + \retval -3: EEPROM not initialized for the connected device; */ int ftdi_write_eeprom(struct ftdi_context *ftdi) { @@ -3688,6 +3886,10 @@ int ftdi_write_eeprom(struct ftdi_context *ftdi) if (ftdi == NULL || ftdi->usb_dev == NULL) ftdi_error_return(-2, "USB device unavailable"); + + if(ftdi->eeprom->initialized_for_connected_device == 0) + ftdi_error_return(-3, "EEPROM not initialized for the connected device"); + eeprom = ftdi->eeprom->buf; /* These commands were traced while running MProg */