/*************************************************************************** * This is a module which is used for counting packets. * * See http://www.intra2net.com/opensource/ipt_account * * for further information * * * * Copyright (C) 2004-2005 by Intra2net AG * * opensource@intra2net.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License * * version 2 as published by the Free Software Foundation; * * * ***************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 #define DEBUGP printk #else #define DEBUGP(format, args...) #endif #if (PAGE_SIZE < 4096) #error "ipt_ACCOUNT needs at least a PAGE_SIZE of 4096" #endif static struct ipt_acc_table *ipt_acc_tables = NULL; static struct ipt_acc_handle *ipt_acc_handles = NULL; static void *ipt_acc_tmpbuf = NULL; /* Spinlock used for manipulating the current accounting tables/data */ DECLARE_LOCK(ipt_acc_lock); /* Mutex (semaphore) used for manipulating userspace handles/snapshot data */ static struct semaphore ipt_acc_userspace_mutex; /* Recursive free of all data structures */ static void ipt_acc_data_free(void *data, unsigned char depth) { /* Empty data set */ if (!data) return; /* Free for 8 bit network */ if (depth == 0) { free_page((unsigned long)data); return; } /* Free for 16 bit network */ if (depth == 1) { struct ipt_acc_mask_16 *mask_16 = (struct ipt_acc_mask_16 *)data; u_int32_t b; for (b=0; b <= 255; b++) { if (mask_16->mask_24[b] != 0) { free_page((unsigned long)mask_16->mask_24[b]); } } free_page((unsigned long)data); return; } /* Free for 24 bit network */ if (depth == 2) { u_int32_t a, b; for (a=0; a <= 255; a++) { if (((struct ipt_acc_mask_8 *)data)->mask_16[a]) { struct ipt_acc_mask_16 *mask_16 = (struct ipt_acc_mask_16*) ((struct ipt_acc_mask_8 *)data)->mask_16[a]; for (b=0; b <= 255; b++) { if (mask_16->mask_24[b]) { free_page((unsigned long)mask_16->mask_24[b]); } } free_page((unsigned long)mask_16); } } free_page((unsigned long)data); return; } printk("ACCOUNT: ipt_acc_data_free called with unknown depth: %d\n", depth); return; } /* Look for existing table / insert new one. Return internal ID or -1 on error */ static int ipt_acc_table_insert(char *name, u_int32_t ip, u_int32_t netmask) { u_int32_t i; DEBUGP("ACCOUNT: ipt_acc_table_insert: %s, %u.%u.%u.%u/%u.%u.%u.%u\n", name, NIPQUAD(ip), NIPQUAD(netmask)); /* Look for existing table */ for (i = 0; i < ACCOUNT_MAX_TABLES; i++) { if (strncmp(ipt_acc_tables[i].name, name, ACCOUNT_TABLE_NAME_LEN) == 0) { DEBUGP("ACCOUNT: Found existing slot: %d - " "%u.%u.%u.%u/%u.%u.%u.%u\n", i, NIPQUAD(ipt_acc_tables[i].ip), NIPQUAD(ipt_acc_tables[i].netmask)); if (ipt_acc_tables[i].ip != ip || ipt_acc_tables[i].netmask != netmask) { printk("ACCOUNT: Table %s found, but IP/netmask mismatch. " "IP/netmask found: %u.%u.%u.%u/%u.%u.%u.%u\n", name, NIPQUAD(ipt_acc_tables[i].ip), NIPQUAD(ipt_acc_tables[i].netmask)); return -1; } ipt_acc_tables[i].refcount++; DEBUGP("ACCOUNT: Refcount: %d\n", ipt_acc_tables[i].refcount); return i; } } /* Insert new table */ for (i = 0; i < ACCOUNT_MAX_TABLES; i++) { /* Found free slot */ if (ipt_acc_tables[i].name[0] == 0) { u_int32_t calc_mask, netsize=0; int j; /* needs to be signed, otherwise we risk endless loop */ DEBUGP("ACCOUNT: Found free slot: %d\n", i); strncpy (ipt_acc_tables[i].name, name, ACCOUNT_TABLE_NAME_LEN-1); ipt_acc_tables[i].ip = ip; ipt_acc_tables[i].netmask = netmask; /* Calculate netsize */ calc_mask = htonl(netmask); for (j = 31; j >= 0; j--) { if (calc_mask&(1<= 24) ipt_acc_tables[i].depth = 0; else if (netsize >= 16) ipt_acc_tables[i].depth = 1; else if(netsize >= 8) ipt_acc_tables[i].depth = 2; DEBUGP("ACCOUNT: calculated netsize: %u -> " "ipt_acc_table depth %u\n", netsize, ipt_acc_tables[i].depth); ipt_acc_tables[i].refcount++; if ((ipt_acc_tables[i].data = (void *)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: out of memory for data of table: %s\n", name); memset(&ipt_acc_tables[i], 0, sizeof(struct ipt_acc_table)); return -1; } return i; } } /* No free slot found */ printk("ACCOUNT: No free table slot found (max: %d). " "Please increase ACCOUNT_MAX_TABLES.\n", ACCOUNT_MAX_TABLES); return -1; } static int ipt_acc_checkentry(const char *tablename, const struct ipt_entry *e, void *targinfo, unsigned int targinfosize, unsigned int hook_mask) { struct ipt_acc_info *info = targinfo; int table_nr; if (targinfosize != IPT_ALIGN(sizeof(struct ipt_acc_info))) { DEBUGP("ACCOUNT: targinfosize %u != %u\n", targinfosize, IPT_ALIGN(sizeof(struct ipt_acc_info))); return 0; } LOCK_BH(&ipt_acc_lock); table_nr = ipt_acc_table_insert(info->table_name, info->net_ip, info->net_mask); UNLOCK_BH(&ipt_acc_lock); if (table_nr == -1) { printk("ACCOUNT: Table insert problem. Aborting\n"); return 0; } /* Table nr caching so we don't have to do an extra string compare for every packet */ info->table_nr = table_nr; return 1; } static void ipt_acc_deleteentry(void *targinfo, unsigned int targinfosize) { u_int32_t i; struct ipt_acc_info *info = targinfo; if (targinfosize != IPT_ALIGN(sizeof(struct ipt_acc_info))) { DEBUGP("ACCOUNT: targinfosize %u != %u\n", targinfosize, IPT_ALIGN(sizeof(struct ipt_acc_info))); } LOCK_BH(&ipt_acc_lock); DEBUGP("ACCOUNT: ipt_acc_deleteentry called for table: %s (#%d)\n", info->table_name, info->table_nr); info->table_nr = -1; /* Set back to original state */ /* Look for table */ for (i = 0; i < ACCOUNT_MAX_TABLES; i++) { if (strncmp(ipt_acc_tables[i].name, info->table_name, ACCOUNT_TABLE_NAME_LEN) == 0) { DEBUGP("ACCOUNT: Found table at slot: %d\n", i); ipt_acc_tables[i].refcount--; DEBUGP("ACCOUNT: Refcount left: %d\n", ipt_acc_tables[i].refcount); /* Table not needed anymore? */ if (ipt_acc_tables[i].refcount == 0) { DEBUGP("ACCOUNT: Destroying table at slot: %d\n", i); ipt_acc_data_free(ipt_acc_tables[i].data, ipt_acc_tables[i].depth); memset(&ipt_acc_tables[i], 0, sizeof(struct ipt_acc_table)); } UNLOCK_BH(&ipt_acc_lock); return; } } /* Table not found */ printk("ACCOUNT: Table %s not found for destroy\n", info->table_name); UNLOCK_BH(&ipt_acc_lock); } static void ipt_acc_depth0_insert(struct ipt_acc_mask_24 *mask_24, u_int32_t net_ip, u_int32_t netmask, u_int32_t src_ip, u_int32_t dst_ip, u_int32_t size, u_int32_t *itemcount) { unsigned char is_src = 0, is_dst = 0, src_slot, dst_slot; char is_src_new_ip = 0, is_dst_new_ip = 0; /* Check if this entry is new */ DEBUGP("ACCOUNT: ipt_acc_depth0_insert: %u.%u.%u.%u/%u.%u.%u.%u " "for net %u.%u.%u.%u/%u.%u.%u.%u, size: %u\n", NIPQUAD(src_ip), NIPQUAD(dst_ip), NIPQUAD(net_ip), NIPQUAD(netmask), size); /* Check if src/dst is inside our network. */ /* Special: net_ip = 0.0.0.0/0 gets stored as src in slot 0 */ if (!netmask) src_ip = 0; if ((net_ip&netmask) == (src_ip&netmask)) is_src = 1; if ((net_ip&netmask) == (dst_ip&netmask) && netmask) is_dst = 1; if (!is_src && !is_dst) { DEBUGP("ACCOUNT: Skipping packet %u.%u.%u.%u/%u.%u.%u.%u " "for net %u.%u.%u.%u/%u.%u.%u.%u\n", NIPQUAD(src_ip), NIPQUAD(dst_ip), NIPQUAD(net_ip), NIPQUAD(netmask)); return; } /* Calculate array positions */ src_slot = (unsigned char)((src_ip&0xFF000000) >> 24); dst_slot = (unsigned char)((dst_ip&0xFF000000) >> 24); /* Increase size counters */ if (is_src) { /* Calculate network slot */ DEBUGP("ACCOUNT: Calculated SRC 8 bit network slot: %d\n", src_slot); if (!mask_24->ip[src_slot].src_packets && !mask_24->ip[src_slot].dst_packets) is_src_new_ip = 1; mask_24->ip[src_slot].src_packets++; mask_24->ip[src_slot].src_bytes+=size; } if (is_dst) { DEBUGP("ACCOUNT: Calculated DST 8 bit network slot: %d\n", dst_slot); if (!mask_24->ip[dst_slot].src_packets && !mask_24->ip[dst_slot].dst_packets) is_dst_new_ip = 1; mask_24->ip[dst_slot].dst_packets++; mask_24->ip[dst_slot].dst_bytes+=size; } /* Increase itemcounter */ DEBUGP("ACCOUNT: Itemcounter before: %d\n", *itemcount); if (src_slot == dst_slot) { if (is_src_new_ip || is_dst_new_ip) { DEBUGP("ACCOUNT: src_slot == dst_slot: %d, %d\n", is_src_new_ip, is_dst_new_ip); (*itemcount)++; } } else { if (is_src_new_ip) { DEBUGP("ACCOUNT: New src_ip: %u.%u.%u.%u\n", NIPQUAD(src_ip)); (*itemcount)++; } if (is_dst_new_ip) { DEBUGP("ACCOUNT: New dst_ip: %u.%u.%u.%u\n", NIPQUAD(dst_ip)); (*itemcount)++; } } DEBUGP("ACCOUNT: Itemcounter after: %d\n", *itemcount); } static void ipt_acc_depth1_insert(struct ipt_acc_mask_16 *mask_16, u_int32_t net_ip, u_int32_t netmask, u_int32_t src_ip, u_int32_t dst_ip, u_int32_t size, u_int32_t *itemcount) { /* Do we need to process src IP? */ if ((net_ip&netmask) == (src_ip&netmask)) { unsigned char slot = (unsigned char)((src_ip&0x00FF0000) >> 16); DEBUGP("ACCOUNT: Calculated SRC 16 bit network slot: %d\n", slot); /* Do we need to create a new mask_24 bucket? */ if (!mask_16->mask_24[slot] && (mask_16->mask_24[slot] = (void *)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: Can't process packet because out of memory!\n"); return; } ipt_acc_depth0_insert((struct ipt_acc_mask_24 *)mask_16->mask_24[slot], net_ip, netmask, src_ip, 0, size, itemcount); } /* Do we need to process dst IP? */ if ((net_ip&netmask) == (dst_ip&netmask)) { unsigned char slot = (unsigned char)((dst_ip&0x00FF0000) >> 16); DEBUGP("ACCOUNT: Calculated DST 16 bit network slot: %d\n", slot); /* Do we need to create a new mask_24 bucket? */ if (!mask_16->mask_24[slot] && (mask_16->mask_24[slot] = (void *)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUT: Can't process packet because out of memory!\n"); return; } ipt_acc_depth0_insert((struct ipt_acc_mask_24 *)mask_16->mask_24[slot], net_ip, netmask, 0, dst_ip, size, itemcount); } } static void ipt_acc_depth2_insert(struct ipt_acc_mask_8 *mask_8, u_int32_t net_ip, u_int32_t netmask, u_int32_t src_ip, u_int32_t dst_ip, u_int32_t size, u_int32_t *itemcount) { /* Do we need to process src IP? */ if ((net_ip&netmask) == (src_ip&netmask)) { unsigned char slot = (unsigned char)((src_ip&0x0000FF00) >> 8); DEBUGP("ACCOUNT: Calculated SRC 24 bit network slot: %d\n", slot); /* Do we need to create a new mask_24 bucket? */ if (!mask_8->mask_16[slot] && (mask_8->mask_16[slot] = (void *)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: Can't process packet because out of memory!\n"); return; } ipt_acc_depth1_insert((struct ipt_acc_mask_16 *)mask_8->mask_16[slot], net_ip, netmask, src_ip, 0, size, itemcount); } /* Do we need to process dst IP? */ if ((net_ip&netmask) == (dst_ip&netmask)) { unsigned char slot = (unsigned char)((dst_ip&0x0000FF00) >> 8); DEBUGP("ACCOUNT: Calculated DST 24 bit network slot: %d\n", slot); /* Do we need to create a new mask_24 bucket? */ if (!mask_8->mask_16[slot] && (mask_8->mask_16[slot] = (void *)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: Can't process packet because out of memory!\n"); return; } ipt_acc_depth1_insert((struct ipt_acc_mask_16 *)mask_8->mask_16[slot], net_ip, netmask, 0, dst_ip, size, itemcount); } } static unsigned int ipt_acc_target(struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, unsigned int hooknum, const void *targinfo, void *userinfo) { const struct ipt_acc_info *info = (const struct ipt_acc_info *)targinfo; u_int32_t src_ip = (*pskb)->nh.iph->saddr; u_int32_t dst_ip = (*pskb)->nh.iph->daddr; u_int32_t size = ntohs((*pskb)->nh.iph->tot_len); LOCK_BH(&ipt_acc_lock); if (ipt_acc_tables[info->table_nr].name[0] == 0) { printk("ACCOUNT: ipt_acc_target: Invalid table id %u. " "IPs %u.%u.%u.%u/%u.%u.%u.%u\n", info->table_nr, NIPQUAD(src_ip), NIPQUAD(dst_ip)); UNLOCK_BH(&ipt_acc_lock); return IPT_CONTINUE; } /* 8 bit network or "any" network */ if (ipt_acc_tables[info->table_nr].depth == 0) { /* Count packet and check if the IP is new */ ipt_acc_depth0_insert( (struct ipt_acc_mask_24 *)ipt_acc_tables[info->table_nr].data, ipt_acc_tables[info->table_nr].ip, ipt_acc_tables[info->table_nr].netmask, src_ip, dst_ip, size, &ipt_acc_tables[info->table_nr].itemcount); UNLOCK_BH(&ipt_acc_lock); return IPT_CONTINUE; } /* 16 bit network */ if (ipt_acc_tables[info->table_nr].depth == 1) { ipt_acc_depth1_insert( (struct ipt_acc_mask_16 *)ipt_acc_tables[info->table_nr].data, ipt_acc_tables[info->table_nr].ip, ipt_acc_tables[info->table_nr].netmask, src_ip, dst_ip, size, &ipt_acc_tables[info->table_nr].itemcount); UNLOCK_BH(&ipt_acc_lock); return IPT_CONTINUE; } /* 24 bit network */ if (ipt_acc_tables[info->table_nr].depth == 2) { ipt_acc_depth2_insert( (struct ipt_acc_mask_8 *)ipt_acc_tables[info->table_nr].data, ipt_acc_tables[info->table_nr].ip, ipt_acc_tables[info->table_nr].netmask, src_ip, dst_ip, size, &ipt_acc_tables[info->table_nr].itemcount); UNLOCK_BH(&ipt_acc_lock); return IPT_CONTINUE; } printk("ACCOUNT: ipt_acc_target: Unable to process packet. " "Table id %u. IPs %u.%u.%u.%u/%u.%u.%u.%u\n", info->table_nr, NIPQUAD(src_ip), NIPQUAD(dst_ip)); UNLOCK_BH(&ipt_acc_lock); return IPT_CONTINUE; } /* Functions dealing with "handles": Handles are snapshots of a accounting state. read snapshots are only for debugging the code and are very expensive concerning speed/memory compared to read_and_flush. The functions aren't protected by spinlocks themselves as this is done in the ioctl part of the code. */ /* Find a free handle slot. Normally only one should be used, but there could be two or more applications accessing the data at the same time. */ static int ipt_acc_handle_find_slot(void) { u_int32_t i; /* Insert new table */ for (i = 0; i < ACCOUNT_MAX_HANDLES; i++) { /* Found free slot */ if (ipt_acc_handles[i].data == NULL) { /* Don't "mark" data as used as we are protected by a spinlock by the calling function. handle_find_slot() is only a function to prevent code duplication. */ return i; } } /* No free slot found */ printk("ACCOUNT: No free handle slot found (max: %u). " "Please increase ACCOUNT_MAX_HANDLES.\n", ACCOUNT_MAX_HANDLES); return -1; } static int ipt_acc_handle_free(u_int32_t handle) { if (handle >= ACCOUNT_MAX_HANDLES) { printk("ACCOUNT: Invalid handle for ipt_acc_handle_free() specified:" " %u\n", handle); return -EINVAL; } ipt_acc_data_free(ipt_acc_handles[handle].data, ipt_acc_handles[handle].depth); memset (&ipt_acc_handles[handle], 0, sizeof (struct ipt_acc_handle)); return 0; } /* Prepare data for read without flush. Use only for debugging! Real applications should use read&flush as it's way more efficent */ static int ipt_acc_handle_prepare_read(char *tablename, struct ipt_acc_handle *dest, u_int32_t *count) { int table_nr=-1; unsigned char depth; for (table_nr = 0; table_nr < ACCOUNT_MAX_TABLES; table_nr++) if (strncmp(ipt_acc_tables[table_nr].name, tablename, ACCOUNT_TABLE_NAME_LEN) == 0) break; if (table_nr == ACCOUNT_MAX_TABLES) { printk("ACCOUNT: ipt_acc_handle_prepare_read(): " "Table %s not found\n", tablename); return -1; } /* Fill up handle structure */ dest->ip = ipt_acc_tables[table_nr].ip; dest->depth = ipt_acc_tables[table_nr].depth; dest->itemcount = ipt_acc_tables[table_nr].itemcount; /* allocate "root" table */ if ((dest->data = (void*)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: out of memory for root table " "in ipt_acc_handle_prepare_read()\n"); return -1; } /* Recursive copy of complete data structure */ depth = dest->depth; if (depth == 0) { memcpy(dest->data, ipt_acc_tables[table_nr].data, sizeof(struct ipt_acc_mask_24)); } else if (depth == 1) { struct ipt_acc_mask_16 *src_16 = (struct ipt_acc_mask_16 *)ipt_acc_tables[table_nr].data; struct ipt_acc_mask_16 *network_16 = (struct ipt_acc_mask_16 *)dest->data; u_int32_t b; for (b = 0; b <= 255; b++) { if (src_16->mask_24[b]) { if ((network_16->mask_24[b] = (void*)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: out of memory during copy of 16 bit " "network in ipt_acc_handle_prepare_read()\n"); ipt_acc_data_free(dest->data, depth); return -1; } memcpy(network_16->mask_24[b], src_16->mask_24[b], sizeof(struct ipt_acc_mask_24)); } } } else if(depth == 2) { struct ipt_acc_mask_8 *src_8 = (struct ipt_acc_mask_8 *)ipt_acc_tables[table_nr].data; struct ipt_acc_mask_8 *network_8 = (struct ipt_acc_mask_8 *)dest->data; struct ipt_acc_mask_16 *src_16, *network_16; u_int32_t a, b; for (a = 0; a <= 255; a++) { if (src_8->mask_16[a]) { if ((network_8->mask_16[a] = (void*)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: out of memory during copy of 24 bit network" " in ipt_acc_handle_prepare_read()\n"); ipt_acc_data_free(dest->data, depth); return -1; } memcpy(network_8->mask_16[a], src_8->mask_16[a], sizeof(struct ipt_acc_mask_16)); src_16 = src_8->mask_16[a]; network_16 = network_8->mask_16[a]; for (b = 0; b <= 255; b++) { if (src_16->mask_24[b]) { if ((network_16->mask_24[b] = (void*)get_zeroed_page(GFP_ATOMIC)) == NULL) { printk("ACCOUNT: out of memory during copy of 16 bit" " network in ipt_acc_handle_prepare_read()\n"); ipt_acc_data_free(dest->data, depth); return -1; } memcpy(network_16->mask_24[b], src_16->mask_24[b], sizeof(struct ipt_acc_mask_24)); } } } } } *count = ipt_acc_tables[table_nr].itemcount; return 0; } /* Prepare data for read and flush it */ static int ipt_acc_handle_prepare_read_flush(char *tablename, struct ipt_acc_handle *dest, u_int32_t *count) { int table_nr; void *new_data_page; for (table_nr = 0; table_nr < ACCOUNT_MAX_TABLES; table_nr++) if (strncmp(ipt_acc_tables[table_nr].name, tablename, ACCOUNT_TABLE_NAME_LEN) == 0) break; if (table_nr == ACCOUNT_MAX_TABLES) { printk("ACCOUNT: ipt_acc_handle_prepare_read_flush(): " "Table %s not found\n", tablename); return -1; } /* Try to allocate memory */ if (!(new_data_page = (void*)get_zeroed_page(GFP_ATOMIC))) { printk("ACCOUNT: ipt_acc_handle_prepare_read_flush(): " "Out of memory!\n"); return -1; } /* Fill up handle structure */ dest->ip = ipt_acc_tables[table_nr].ip; dest->depth = ipt_acc_tables[table_nr].depth; dest->itemcount = ipt_acc_tables[table_nr].itemcount; dest->data = ipt_acc_tables[table_nr].data; *count = ipt_acc_tables[table_nr].itemcount; /* "Flush" table data */ ipt_acc_tables[table_nr].data = new_data_page; ipt_acc_tables[table_nr].itemcount = 0; return 0; } /* Copy 8 bit network data into a prepared buffer. We only copy entries != 0 to increase performance. */ static int ipt_acc_handle_copy_data(void *to_user, u_int32_t *to_user_pos, u_int32_t *tmpbuf_pos, struct ipt_acc_mask_24 *data, u_int32_t net_ip, u_int32_t net_OR_mask) { struct ipt_acc_handle_ip handle_ip; u_int32_t handle_ip_size = sizeof (struct ipt_acc_handle_ip); u_int32_t i; for (i = 0; i <= 255; i++) { if (data->ip[i].src_packets || data->ip[i].dst_packets) { handle_ip.ip = net_ip | net_OR_mask | (i<<24); handle_ip.src_packets = data->ip[i].src_packets; handle_ip.src_bytes = data->ip[i].src_bytes; handle_ip.dst_packets = data->ip[i].dst_packets; handle_ip.dst_bytes = data->ip[i].dst_bytes; /* Temporary buffer full? Flush to userspace */ if (*tmpbuf_pos+handle_ip_size >= PAGE_SIZE) { if (copy_to_user(to_user + *to_user_pos, ipt_acc_tmpbuf, *tmpbuf_pos)) return -EFAULT; *to_user_pos = *to_user_pos + *tmpbuf_pos; *tmpbuf_pos = 0; } memcpy(ipt_acc_tmpbuf+*tmpbuf_pos, &handle_ip, handle_ip_size); *tmpbuf_pos += handle_ip_size; } } return 0; } /* Copy the data from our internal structure We only copy entries != 0 to increase performance. Overwrites ipt_acc_tmpbuf. */ static int ipt_acc_handle_get_data(u_int32_t handle, void *to_user) { u_int32_t to_user_pos=0, tmpbuf_pos=0, net_ip; unsigned char depth; if (handle >= ACCOUNT_MAX_HANDLES) { printk("ACCOUNT: invalid handle for ipt_acc_handle_get_data() " "specified: %u\n", handle); return -1; } if (ipt_acc_handles[handle].data == NULL) { printk("ACCOUNT: handle %u is BROKEN: Contains no data\n", handle); return -1; } net_ip = ipt_acc_handles[handle].ip; depth = ipt_acc_handles[handle].depth; /* 8 bit network */ if (depth == 0) { struct ipt_acc_mask_24 *network = (struct ipt_acc_mask_24*)ipt_acc_handles[handle].data; if (ipt_acc_handle_copy_data(to_user, &to_user_pos, &tmpbuf_pos, network, net_ip, 0)) return -1; /* Flush remaining data to userspace */ if (tmpbuf_pos) if (copy_to_user(to_user+to_user_pos, ipt_acc_tmpbuf, tmpbuf_pos)) return -1; return 0; } /* 16 bit network */ if (depth == 1) { struct ipt_acc_mask_16 *network_16 = (struct ipt_acc_mask_16*)ipt_acc_handles[handle].data; u_int32_t b; for (b = 0; b <= 255; b++) { if (network_16->mask_24[b]) { struct ipt_acc_mask_24 *network = (struct ipt_acc_mask_24*)network_16->mask_24[b]; if (ipt_acc_handle_copy_data(to_user, &to_user_pos, &tmpbuf_pos, network, net_ip, (b << 16))) return -1; } } /* Flush remaining data to userspace */ if (tmpbuf_pos) if (copy_to_user(to_user+to_user_pos, ipt_acc_tmpbuf, tmpbuf_pos)) return -1; return 0; } /* 24 bit network */ if (depth == 2) { struct ipt_acc_mask_8 *network_8 = (struct ipt_acc_mask_8*)ipt_acc_handles[handle].data; u_int32_t a, b; for (a = 0; a <= 255; a++) { if (network_8->mask_16[a]) { struct ipt_acc_mask_16 *network_16 = (struct ipt_acc_mask_16*)network_8->mask_16[a]; for (b = 0; b <= 255; b++) { if (network_16->mask_24[b]) { struct ipt_acc_mask_24 *network = (struct ipt_acc_mask_24*)network_16->mask_24[b]; if (ipt_acc_handle_copy_data(to_user, &to_user_pos, &tmpbuf_pos, network, net_ip, (a << 8) | (b << 16))) return -1; } } } } /* Flush remaining data to userspace */ if (tmpbuf_pos) if (copy_to_user(to_user+to_user_pos, ipt_acc_tmpbuf, tmpbuf_pos)) return -1; return 0; } return -1; } static int ipt_acc_set_ctl(struct sock *sk, int cmd, void *user, u_int32_t len) { struct ipt_acc_handle_sockopt handle; int ret = -EINVAL; if (!capable(CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case IPT_SO_SET_ACCOUNT_HANDLE_FREE: if (len != sizeof(struct ipt_acc_handle_sockopt)) { printk("ACCOUNT: ipt_acc_set_ctl: wrong data size (%u != %u) " "for IPT_SO_SET_HANDLE_FREE\n", len, sizeof(struct ipt_acc_handle_sockopt)); break; } if (copy_from_user (&handle, user, len)) { printk("ACCOUNT: ipt_acc_set_ctl: copy_from_user failed for " "IPT_SO_SET_HANDLE_FREE\n"); break; } down(&ipt_acc_userspace_mutex); ret = ipt_acc_handle_free(handle.handle_nr); up(&ipt_acc_userspace_mutex); break; case IPT_SO_SET_ACCOUNT_HANDLE_FREE_ALL: { u_int32_t i; down(&ipt_acc_userspace_mutex); for (i = 0; i < ACCOUNT_MAX_HANDLES; i++) ipt_acc_handle_free(i); up(&ipt_acc_userspace_mutex); ret = 0; break; } default: printk("ACCOUNT: ipt_acc_set_ctl: unknown request %i\n", cmd); } return ret; } static int ipt_acc_get_ctl(struct sock *sk, int cmd, void *user, int *len) { struct ipt_acc_handle_sockopt handle; int ret = -EINVAL; if (!capable(CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case IPT_SO_GET_ACCOUNT_PREPARE_READ_FLUSH: case IPT_SO_GET_ACCOUNT_PREPARE_READ: { struct ipt_acc_handle dest; if (*len < sizeof(struct ipt_acc_handle_sockopt)) { printk("ACCOUNT: ipt_acc_get_ctl: wrong data size (%u != %u) " "for IPT_SO_GET_ACCOUNT_PREPARE_READ/READ_FLUSH\n", *len, sizeof(struct ipt_acc_handle_sockopt)); break; } if (copy_from_user (&handle, user, sizeof(struct ipt_acc_handle_sockopt))) { return -EFAULT; break; } LOCK_BH(&ipt_acc_lock); if (cmd == IPT_SO_GET_ACCOUNT_PREPARE_READ_FLUSH) ret = ipt_acc_handle_prepare_read_flush( handle.name, &dest, &handle.itemcount); else ret = ipt_acc_handle_prepare_read( handle.name, &dest, &handle.itemcount); UNLOCK_BH(&ipt_acc_lock); // Error occured during prepare_read? if (ret == -1) return -EINVAL; /* Allocate a userspace handle */ down(&ipt_acc_userspace_mutex); if ((handle.handle_nr = ipt_acc_handle_find_slot()) == -1) { ipt_acc_data_free(dest.data, dest.depth); up(&ipt_acc_userspace_mutex); return -EINVAL; } memcpy(&ipt_acc_handles[handle.handle_nr], &dest, sizeof(struct ipt_acc_handle)); up(&ipt_acc_userspace_mutex); if (copy_to_user(user, &handle, sizeof(struct ipt_acc_handle_sockopt))) { return -EFAULT; break; } ret = 0; break; } case IPT_SO_GET_ACCOUNT_GET_DATA: if (*len < sizeof(struct ipt_acc_handle_sockopt)) { printk("ACCOUNT: ipt_acc_get_ctl: wrong data size (%u != %u)" " for IPT_SO_GET_ACCOUNT_PREPARE_READ/READ_FLUSH\n", *len, sizeof(struct ipt_acc_handle_sockopt)); break; } if (copy_from_user (&handle, user, sizeof(struct ipt_acc_handle_sockopt))) { return -EFAULT; break; } if (handle.handle_nr >= ACCOUNT_MAX_HANDLES) { return -EINVAL; break; } if (*len < ipt_acc_handles[handle.handle_nr].itemcount * sizeof(struct ipt_acc_handle_ip)) { printk("ACCOUNT: ipt_acc_get_ctl: not enough space (%u < %u)" " to store data from IPT_SO_GET_ACCOUNT_GET_DATA\n", *len, ipt_acc_handles[handle.handle_nr].itemcount * sizeof(struct ipt_acc_handle_ip)); ret = -ENOMEM; break; } down(&ipt_acc_userspace_mutex); ret = ipt_acc_handle_get_data(handle.handle_nr, user); up(&ipt_acc_userspace_mutex); if (ret) { printk("ACCOUNT: ipt_acc_get_ctl: ipt_acc_handle_get_data" " failed for handle %u\n", handle.handle_nr); break; } ret = 0; break; case IPT_SO_GET_ACCOUNT_GET_HANDLE_USAGE: { u_int32_t i; if (*len < sizeof(struct ipt_acc_handle_sockopt)) { printk("ACCOUNT: ipt_acc_get_ctl: wrong data size (%u != %u)" " for IPT_SO_GET_ACCOUNT_GET_HANDLE_USAGE\n", *len, sizeof(struct ipt_acc_handle_sockopt)); break; } /* Find out how many handles are in use */ handle.itemcount = 0; down(&ipt_acc_userspace_mutex); for (i = 0; i < ACCOUNT_MAX_HANDLES; i++) if (ipt_acc_handles[i].data) handle.itemcount++; up(&ipt_acc_userspace_mutex); if (copy_to_user(user, &handle, sizeof(struct ipt_acc_handle_sockopt))) { return -EFAULT; break; } ret = 0; break; } case IPT_SO_GET_ACCOUNT_GET_TABLE_NAMES: { u_int32_t size = 0, i, name_len; char *tnames; LOCK_BH(&ipt_acc_lock); /* Determine size of table names */ for (i = 0; i < ACCOUNT_MAX_TABLES; i++) { if (ipt_acc_tables[i].name[0] != 0) size += strlen (ipt_acc_tables[i].name) + 1; } size += 1; /* Terminating NULL character */ if (*len < size || size > PAGE_SIZE) { UNLOCK_BH(&ipt_acc_lock); printk("ACCOUNT: ipt_acc_get_ctl: not enough space (%u < %u < %lu)" " to store table names\n", *len, size, PAGE_SIZE); ret = -ENOMEM; break; } /* Copy table names to userspace */ tnames = ipt_acc_tmpbuf; for (i = 0; i < ACCOUNT_MAX_TABLES; i++) { if (ipt_acc_tables[i].name[0] != 0) { name_len = strlen (ipt_acc_tables[i].name) + 1; memcpy(tnames, ipt_acc_tables[i].name, name_len); tnames += name_len; } } UNLOCK_BH(&ipt_acc_lock); /* Terminating NULL character */ *tnames = 0; /* Transfer to userspace */ if (copy_to_user(user, ipt_acc_tmpbuf, size)) return -EFAULT; ret = 0; break; } default: printk("ACCOUNT: ipt_acc_get_ctl: unknown request %i\n", cmd); } return ret; } static struct ipt_target ipt_acc_reg = { .name = "ACCOUNT", .target = ipt_acc_target, .checkentry = ipt_acc_checkentry, .destroy = ipt_acc_deleteentry, .me = THIS_MODULE }; static struct nf_sockopt_ops ipt_acc_sockopts = { .pf = PF_INET, .set_optmin = IPT_SO_SET_ACCOUNT_HANDLE_FREE, .set_optmax = IPT_SO_SET_ACCOUNT_MAX+1, .set = ipt_acc_set_ctl, .get_optmin = IPT_SO_GET_ACCOUNT_PREPARE_READ, .get_optmax = IPT_SO_GET_ACCOUNT_MAX+1, .get = ipt_acc_get_ctl }; static int __init init(void) { init_MUTEX(&ipt_acc_userspace_mutex); if ((ipt_acc_tables = kmalloc(ACCOUNT_MAX_TABLES * sizeof(struct ipt_acc_table), GFP_KERNEL)) == NULL) { printk("ACCOUNT: Out of memory allocating account_tables structure"); goto error_cleanup; } memset(ipt_acc_tables, 0, ACCOUNT_MAX_TABLES * sizeof(struct ipt_acc_table)); if ((ipt_acc_handles = kmalloc(ACCOUNT_MAX_HANDLES * sizeof(struct ipt_acc_handle), GFP_KERNEL)) == NULL) { printk("ACCOUNT: Out of memory allocating account_handles structure"); goto error_cleanup; } memset(ipt_acc_handles, 0, ACCOUNT_MAX_HANDLES * sizeof(struct ipt_acc_handle)); /* Allocate one page as temporary storage */ if ((ipt_acc_tmpbuf = (void*)__get_free_page(GFP_KERNEL)) == NULL) { printk("ACCOUNT: Out of memory for temporary buffer page\n"); goto error_cleanup; } /* Register setsockopt */ if (nf_register_sockopt(&ipt_acc_sockopts) < 0) { printk("ACCOUNT: Can't register sockopts. Aborting\n"); goto error_cleanup; } if (ipt_register_target(&ipt_acc_reg)) goto error_cleanup; return 0; error_cleanup: if(ipt_acc_tables) kfree(ipt_acc_tables); if(ipt_acc_handles) kfree(ipt_acc_handles); if (ipt_acc_tmpbuf) free_page((unsigned long)ipt_acc_tmpbuf); return -EINVAL; } static void __exit fini(void) { ipt_unregister_target(&ipt_acc_reg); nf_unregister_sockopt(&ipt_acc_sockopts); kfree(ipt_acc_tables); kfree(ipt_acc_handles); free_page((unsigned long)ipt_acc_tmpbuf); } module_init(init); module_exit(fini); MODULE_LICENSE("GPL");